
Polynomial Loop Recognition in Traces
(tool paper)

Alain Ketterlin
Inria/Camus, CNRS/Icube, Université de Strasbourg (France)

alain@unistra.fr

Abstract
This paper describes a tool named PLR which recognizes
polynomial loop nests in traces. After providing background
on affine (i.e., polyhedral) loop recognition with NLR, it ex-
poses how a particular representation for integer polynomi-
als leads to a simple and efficient interpolation technique.
The new PLR algorithm, a slight modification of the origi-
nal NLR, leverages this interpolation technique to recognize
polynomial loops, i.e., loops where all bounds and values are
expressed as multivariate polynomials in the loop counters.

1 Background on NLR
The Nested Loop Recognition (NLR) algorithm [8] takes a
trace as input and outputs, whenever possible, an affine loop
nest that produces that trace. Its input is made of a sequence
of possibly tagged vectors of integers, like the one on the
left part of this display:

A 1
B 2 3
B 6 60
[...]
A 5
B 66 3
[...]

for i = 0 to 17
val A, 1 + 4*i
for j = 0 to 42 + i

val B, 2 + 64*i + 4*j, 3 + 57*j

Its output, shown on the right, is a loop nest where every
loop bound and vector element is an affine combination of
the enclosing loop counters.
NLR has been originally designed for trace compression

and memory access prediction [8], and more generally to
handle profiling data [2]. It has also been used for dynamic
optimization [9], or to assist static analysis [3, 13]. Let us also
mention the work of Rodríguez et al. [12], which has similar
objectives and an interesting application to the optimization
of sparse structure accesses [1]; however, their approach is
significantly different, and we are unable to assess howmuch
of what follows could apply to their algorithm.

1.1 The Algorithm
The NLR algorithm is similar to a shift-reduce parsing algo-
rithm. It maintains an internal stack holding already recog-
nized loops and raw vectors. Any incoming vector is pushed
onto the stack, whose upper part is then searched for possible
reductions. There are two possible reduction operations:

IMPACT 2025: 15th Intl Workshop on Polyhedral Compilation Techniques
(in conjunction with HiPEAC 2025). January 22, 2025, Barcelona, Spain.

1. forming a new loop from three consecutive blocks of
stack items, identified as its first three iterations;

2. recognizing a new iteration from an upper segment of
the stack and the loop immediately underneath it.

These reductions are at the heart of the algorithm, and we
will examine their details shortly. As soon as a reduction is
possible, it is greedily applied: some stack items are removed,
a new or modified loop is pushed, and the search for a re-
duction restarts with the updated stack. If no reduction is
possible, NLR waits for the next input.

When it is looking for a reduction, NLR considers increas-
ingly long segments at the high end of the stack: on each
segment, applicable reductions are attempted. A parameter
𝐾 bounds the search, by limiting the number of stack items
in an iteration. Below is an illustration of this search with
𝐾 = 4, where potential iterations are shown as boxes around
stack items, and potentially extendable loops are shadowed:

length stack (top on the right) attempt

2 iter
3 loop

iter
4 iter
5 iter
6 loop
9 loop
12 loop

Up to 3𝐾 stack items are examined in search for a new loop,
and up to 𝐾 + 1 in search for a new iteration. In pathologi-
cal cases (e.g., random input) with 𝑁 vectors, NLR will test
𝑂 (𝑁𝐾) segments but perform 𝑂 (𝑁𝐾2) item comparisons,
and find no reduction at all. In more favorable cases, the max-
imum stack size depends on the shape of the loops found,
not on the size of the input trace, which is processed incre-
mentally and not kept in memory.

1.2 Recognizing Loops and Iterations
While searching the stack, NLR has to assess the feasibility
of various reductions. Stack items are either raw vectors
or already recognized loops, i.e., essentially abstract syntax
trees where internal nodes are loops and leaves are vectors.
However, loops have bounds and vectors contain elements,
both of which are affine combinations of the enclosing loop
counters. Therefore, NLR uses a combination of syntactic
and numeric criteria.

1

https://impact-workshop.org/impact2025/


IMPACT 2025, January 22, Barcelona, Spain Alain Ketterlin

When NLR examines whether it can form a new loop from
three consecutive blocks of stack items, it first tests whether
the three blocks are isomorphic: this is the syntactic part. It
then tests whether the numbers that appear as constants in
the various affine functions form arithmetic progressions:
this is the numeric part. If both tests succeed, NLR considers
that the three blocks are three successive iterations of a loop.
For instance, consider the following three blocks of two

stack items (shown here one item per line, with the last
pushed item at the bottom):

[. . . ]

– val 25

– for i = 0 to 15 { val 13 + 7i; }

– val 49

– for i = 0 to 27 { val 19 + 7i; }

– val 73

– for i = 0 to 39 { val 25 + 7i; }

j=0

j=1

j=2

Because the three blocks are isomorphic (modulo numbers),
their common shape could be the shape of a loop body. And
because the constants appearing in corresponding positions
(shown on a gray background above) form arithmetic pro-
gressions, they can each be turned into an affine function
of a new counter ranging from 0 to 2. NLR recognizes this
segment as (and replaces it with) a new loop:

– for j = 0 to 3

val 25 + 24j

for i = 0 to 15 + 12j { val 13 + 6j + 7i; }
j

Once isomorphism is established, NLR essentially performs
interpolation on a set of slightly over-constrained series of
integers: the first two blocks define the interpolation, while
the third provides some guarantee that the interpolation
is non-anecdotal. Note however that not all numbers are
subject to interpolation: since NLR targets affine functions,
numbers that are coefficients of a variable (like 7 in the
example) are considered to be part of the syntactic structure,
and must match exactly in all three blocks.

As much as forming a new loop is based on interpolation,
recognizing a new iteration is based on extrapolation. For
instance, if the previous loop is on the top the stack and,
after 53 more inputs (and 49 reductions, one of which forms
a new loop), the following items appear on top of it:

– val 97

– for i = 0 to 51 { val 31 + 7i; }

then at some point in its search, NLR will test whether these
last two items actually represent a new iteration of the loop
on j. To do this, it extrapolates the body of the loop for
its next iteration (j=3), finds that the result matches the
following block of items, removes these items from the stack,
and increments the loop upper bound.

1.3 Corner Cases
The recognition of a new iteration of an existing loop is not
as simple as we made it appear above, and complications
may appear in, well, corners of iteration spaces. Consider
for example a trace produced by the loop on the left:

for (x=0; x<5; x++)
for (y=0; y<5-i; y++)

... 10*x+y ...

j

i

00
01
02
03
04

10
11
12
13

20
21
22

30
31

40

– for i=0 to 3
for j=0 to 5-i

val 10*i+j
– val 30
– val 31
– val 40

Assume that the first 3 iterations on x each give rise to a
loop (on j) that NLR recognizes, and that these 3 loops are
then themselves recognized as a new loop on i, as shown on
the right. Unfortunately, the iteration i=3 does not produce
enough terms to form a new loop on j, and leaves items
on the stack that do not match the (extrapolated) preceding
loop body. This would prevent NLR from extending its loop
on i and cover the whole trace with a single loop.

NLR includes a coping mechanism for this situation: when
it extrapolates the body of an existing loop in the hope of
finding its next iteration in later stack items, it (virtually)
unrolls any inner loop that would have too few iterations (i.e.,
the inner loop on j in the example), before comparing the
result to the rest of the stack. It does the same immediately
after forming of a new loop, extrapolating iteration −1 to
gather potential previous iterations that did not fully match
the loop body.
We do not describe these details here because they are

probably of limited general interest and would take too much
space (as they do in our implementation, where they take
more lines that everything else).

2 Integer Polynomial Interpolation
NLR spends a lot of time on interpolation, which is easy and
fast for affine functions. Adapting the algorithm to polyno-
mial loops requires both a suitable representation for integer
polynomials, and an efficient way to determine the coeffi-
cients of a polynomial given its successive values.

2.1 Integer Polynomials and Naive Interpolation
An integer polynomial is an integer-valued polynomial of
integer variable(s). In another line of research [7], we have
argued for an alternative representation of integer polyno-
mials, using binomial powers:

𝑥 𝑘 ≜

(
𝑥

𝑘

)
=
𝑥 · (𝑥 − 1) · · · (𝑥 − 𝑘 + 1)

𝑘!

The binomial power 𝑥 𝑘 , defined for any integer 𝑥 and non-
negative exponent 𝑘 , is simply a binomial coefficient in gen-
eral form; the only purpose of the special notation is to
simplify formulas below. An integer polynomial on indeter-
minate 𝑥 is then defined as a combination of various binomial

2



Polynomial Loop Recognition in Traces IMPACT 2025, January 22, Barcelona, Spain

powers of 𝑥 with integer coefficients:

𝑝 (𝑥) = 𝑎0 + 𝑎1𝑥 1 + · · · + 𝑎𝑛𝑥 𝑛 (𝑎𝑖 ∈ Z, ∀𝑖 ∈ [0, 𝑛])

This representation is both correct (all such polynomials are
integer-valued) and complete (all integer-valued polynomials
admit such a representation), and also completely avoids the
use of rational coefficients (e.g., 𝑥 (𝑥−1)2 is just 𝑥 2 ).
Given successive integer values 𝑣0, . . . , 𝑣𝑛 , finding the in-

terpolating polynomial 𝑝 (𝑥) = 𝑎0 + 𝑎1𝑥 1 + · · · + 𝑎𝑛𝑥 𝑛 such
that 𝑣𝑖 = 𝑝 (𝑖) is easily done by writing down these equations:

𝑣0 = 𝑝 (0) = 𝑎0
𝑣1 = 𝑝 (1) = 𝑎0 + 𝑎1·11

𝑣2 = 𝑝 (2) = 𝑎0 + 𝑎1·21 + 𝑎2·22
. . .

This system is triangular by construction (because 𝑥 𝑘 = 0
whenever 𝑘 > 𝑥 ≥ 0), and every equation introduces a new
unknown 𝑎𝑖 with coefficient 𝑖 𝑖 = 1. Therefore, the integer
solution always exists, is unique, and has degree at most 𝑛.
It can be calculated incrementally:

𝑎0 = 𝑣0, 𝑎𝑖 = 𝑣𝑖 −
𝑖−1∑︁
𝑗=0

𝑎 𝑗 · 𝑖 𝑗 (0 < 𝑖 ≤ 𝑛)

or simultaneously:

𝑎𝑖 =

𝑖∑︁
𝑗=0

(−1) 𝑖− 𝑗 · 𝑖 𝑗 · 𝑣 𝑗

The equivalence between these two forms is easily proved
by induction.

2.2 Difference-Based Interpolation
These last equations make it easy to determine the coeffi-
cients of the polynomial interpolating a sequence of succes-
sive values. However, there is an even more efficient way to
obtain the same result, based on the notion of finite differ-
ence, which is the discrete analog to the continuous deriva-
tive. For any integer function 𝑓 of an integer variable 𝑥 , its
finite difference with respect to 𝑥 is defined as:

Δ𝑓 (𝑥) = 𝑓 (𝑥 + 1) − 𝑓 (𝑥) (1)

The 𝑑-th order finite difference Δ(𝑑 ) 𝑓 is defined inductively:

Δ(0) 𝑓 = 𝑓 , Δ(𝑑+1) 𝑓 = Δ
(
Δ(𝑑 ) 𝑓

)
(𝑑 ≥ 0) (2)

Binomial powers have especially simple expressions of their
finite differences:

Δ𝑥 𝑘+1 = 𝑥 𝑘

This is a simple variation on the addition rule for binomial
coefficients, (𝑥 + 1)𝑘+1 = 𝑥 𝑘 + 𝑥 𝑘+1 , which also governs the
construction of Pascal’s triangle. The finite difference of an
integer polynomial is:

Δ(𝑎0 + 𝑎1𝑥 1 + · · · + 𝑎𝑛𝑥 𝑛 ) = 𝑎1 + · · · + 𝑎𝑛𝑥 𝑛−1

which amounts to “shifting the coefficients”; more generally:

Δ(𝑑 )

(
𝑛∑︁
𝑖=0

𝑎𝑖 ·𝑥 𝑖
)
=

𝑛∑︁
𝑖=𝑑

𝑎𝑖 ·𝑥 𝑖−𝑑 (3)

whose immediate consequence is a distinctive property of
the use of binomial powers: Δ(𝑑 )𝑝 (0) = 𝑎𝑑 , i.e., the coeffi-
cients are the values of the successive finite differences at 0.
Note also that polynomials have only a finite number of not
uniformly zero finite differences: for all 𝑑 > 𝑛, Δ(𝑑 )𝑝 = 0.

That is a lot of definitions and formalism, but it broadens
the perspective on interpolation by adding a new dimension,
namely the finite difference order. The idea is to consider
values and coefficients at all orders simultaneously, as a 2-
dimensional discrete space, with axes along 𝑥 and 𝑑 :

0 𝑑 𝑛
0

𝑥 Δ(𝑑 )𝑝 (𝑥)

The border conditions are Δ(0)𝑝 (𝑥) = 𝑣𝑥 and Δ(𝑑 )𝑝 (0) = 𝑎𝑑 ,
as per equations (2) and (3) respectively. It turns out that this
space captures a fundamental symmetry between the values
𝑣0, . . . , 𝑣𝑛 and the coefficients 𝑎0, . . . , 𝑎𝑛 of a polynomial.

First, we can write the definition of the finite difference of
𝑝 for any 𝑥 at an arbitrary order 𝑑 (that is, Equation (1) with
𝑓 = Δ(𝑑 )𝑝), in two different ways, depending on which axis
the computation moves along:

Δ(𝑑 )𝑝 (𝑥 + 1) = Δ(𝑑 )𝑝 (𝑥) + Δ(𝑑+1)𝑝 (𝑥) (4a)

Δ(𝑑+1)𝑝 (𝑥) = Δ(𝑑 )𝑝 (𝑥 + 1) − Δ(𝑑 )𝑝 (𝑥) (4b)

Now, the symmetry is between:
a. enumeration: computing the values 𝑣0, . . . , 𝑣𝑛 , from

the coefficients 𝑎0, . . . , 𝑎𝑛 , using Equation (4a), and
b. interpolation: computing the coefficients 𝑎0, . . . , 𝑎𝑛 ,

from the values 𝑣0, . . . , 𝑣𝑛 , using Equation (4b);
Here is a graphical representation of each computation with
𝑛 = 3, as far as 𝑎0, . . . , 𝑎𝑛 and 𝑣0, . . . , 𝑣𝑛 are involved:

a. enumeration

𝑎0=𝑣0 𝑎1 𝑎2 𝑎3

𝑣1

𝑣2

𝑣3

b. interpolation

𝑣0=𝑎0 𝑎1 𝑎2 𝑎3

𝑣1

𝑣2

𝑣3

These simple schemes immediately lead to implementation.
For instance, here are code fragments for in place enumera-
tion and interpolation in an array containing 𝑛 + 1 integers
(i.e., either coefficients or values). The reader is advised to
look for the difference between these two fragments, because
there is only one.

3



IMPACT 2025, January 22, Barcelona, Spain Alain Ketterlin

// a. enumeration
// t is [𝑎0,. . . ,𝑎𝑛]
for (i=1; i<=n; i++)

for (j=n; j>=i; j--)
t[j] += t[j-1];

// t is [𝑣0,. . . ,𝑣𝑛]

// b. interpolation
// t is [𝑣0,. . . ,𝑣𝑛]
for (i=1; i<=n; i++)

for (j=n; j>=i; j--)
t[j] -= t[j-1];

// t is [𝑎0,. . . ,𝑎𝑛]

Both fragments perform exactly (𝑛 + 1) 2 additions or sub-
tractions, and no multiplication. This matters if values or
coefficients are, for instance, arbitrary precision integers, or
even more complex mathematical objects like, wait for it,
polynomials in a multivariate setting.

Finally, for those who wonder, there is a third way to write
the finite difference equation:

Δ(𝑑 )𝑝 (𝑥) = Δ(𝑑 )𝑝 (𝑥 + 1) − Δ(𝑑+1)𝑝 (𝑥) (4c)

One use for this variant is “backward shifting”, which be-
comes “backward enumeration” when iterated: if the array
t contains the coefficients of 𝑝 (𝑥), then, after

for (j=n-1; j>=0; j--)
t[j] -= t[j+1];

the array contains the coefficients of 𝑞(𝑥) = 𝑝 (𝑥 − 1). This
code is used to update a newly formed loop that gathers one
previous iteration (see Section 1.3).

3 Polynomial Loop Recognition
With an adequate representation of integer polynomials,
and a suitable interpolation technique, the loop recognition
algorithm can be adjusted. This section looks at these adjust-
ments, and describes a new algorithm called PLR.

3.1 Polynomial Loops
We can now have a more detailed look at polynomial loops,
and describe how they can be recognized in traces. Essen-
tially, polynomial loops have polynomials wherever affine
loops have affine combinations, which means as loop bounds
and vector elements. Since loops can be nested to an arbi-
trary depth, all these polynomials are multivariate, involving
all loop counters in scope where they appear. There are two
aspects to multivariate polynomials, which we examine sep-
arately even though they often appear simultaneously.

First, a multivariate polynomial can be “simply” non-linear,
and include simple products of variables. Such functions ap-
pear frequently, for instance, in address calculations for cells
of multi-dimensional arrays. The loop forming mechanism
described in Section 1.2 is easily extended by considering
all numbers appearing in a stack item, including those that
act as coefficients of existing variables. Here is a trimmed
down and slightly modified version of the example used in
Section 1.2, where the coefficient of i varies:

– for i = 0 to ... { val 13 + 5i; }

– for i = 0 to ... { val 19 + 7i; }

– for i = 0 to ... { val 25 + 9i; }

[...] { val 13 + 6j + (5+2j)i; }

j=0

j=1

j=2

The coefficient of i is now subject to interpolation, and
will be turned into a function of the newly introduced loop
counter. The net effect in this example is the appearance of
the non-linear term 2·j·i.
Second, the very notion of polynomial functions allows

the presence of various powers of a variable, which, as we
have seen in the previous section, have to be understood
as binomial powers. Such integer polynomials appear, for
instance, in all problems that involve counting or ranking
individual instructions. The loop formation mechanism can
be extended to recognize higher degree polynomial progres-
sions, provided enough stack items are available: successive
values are then interpolated with the technique described in
Section 2.2. Here is the same example again, modified and
extended to exhibit a degree-2 polynomial progression:

– for i = 0 to ... { val 13 + 7i; }

– for i = 0 to ... { val 19 + 7i; }

– for i = 0 to ... { val 27 + 7i; }

– for i = 0 to ... { val 37 + 7i; }

[...] { val 13 + 6j1 + 2j2 + 7i; }

j=0

j=1

j=2

j=3

13 6 2 0
19 8 2
27 10
37

The resulting polynomial of degree 2 is derived from 4 stack
items, where 3 would suffice; the algorithm uses interpola-
tion as part of its search for regularity, not just to represent
any sequence of blocks of stack items. The general rule is the
following: PLR will form a new loop whenever it can inter-
polate 𝑛 + 2 isomorphic blocks with polynomials of degree at
most 𝑛 (that is, represented with 𝑛 + 1 coefficients). Note that
this rule covers the one used by NLR, which requires 3 values
to assert an affine function (a polynomial of degree 1). It also
implements a description size minimization heuristics: if we
consider the size of a block to be the overall number of poly-
nomial coefficients it contains, then the interpolated loop
must contain fewer coefficients that the blocks it replaces.

We have focused mainly on new loop formation with poly-
nomials functions. PLR also reduces its stack when it finds
a new iteration of an existing loop, including non trivial
extrapolation as explained in Section 1.3. This mechanism
requires no significant modification when moving to poly-
nomial loops.

3.2 Updating the Search Strategy
PLR uses the same search strategy as NLR, examining in-
creasingly longer segments at the top of its internal stack.
Like NLR, it limits this search with the help of the parameter
𝐾 , which is the maximal length of a loop body. However,
letting PLR freely attempt interpolation with higher degree
polynomials on longer segments would add a new source of
unbounded complexity. Therefore PLR introduces a new pa-
rameter𝐷 , which is the highest degree at which interpolation
will be attempted. All degrees 𝑑 from 0 to 𝐷 are considered,
as long as the current segment length is a multiple of 𝑑 + 2.

4



Polynomial Loop Recognition in Traces IMPACT 2025, January 22, Barcelona, Spain

Having two distinct parameters raises the question of
their interaction. We see no clear reason why one should
be more important than the other: 𝐾 is clearly bounding
syntactic complexity, while 𝐷 is meant to bound numerical
complexity. Therefore, our current implementation uses a
naive approach; here is how it enumerates its attempts:
for every segment length ℓ

for every degree 𝑑 between 0 and 𝐷
if 𝑑 + 2 evenly divides ℓ and ℓ

𝑑+2 ≤ 𝐾

attempt to form a new loop
For each attempt, if the𝑑+2 blocks of size ℓ

𝑑+2 are isomorphic,
PLR will try to interpolate then with polynomials of degree
𝑑 . Attempting to recognize new iterations of existing loops
is unaffected by 𝐷 , and happens for all segment lengths up
to 𝐾 + 1. The following table lists some of these attempts
when 𝐾 = 4 and 𝐷 = 3:
length stack (top on the right) attempt

2 loop (𝑑 = 0)
iter

3 loop (𝑑 = 1)
iter

4 loop (𝑑 = 0)
loop (𝑑 = 2)
iter

5 loop (𝑑 = 3)
iter

6 loop (𝑑 = 0)
loop (𝑑 = 1)

[. . . ]
15 loop (𝑑 = 3)
16 loop (𝑑 = 2)
20 loop (𝑑 = 3)
PLR is as greedy as NLR, and will apply the first valid re-
duction it finds. For a given block size, forming a new loop
with polynomials of degree 𝑑 is only considered if attempts
with lower degrees have failed. Similarly, for a given degree,
forming a loop with blocks of size 𝑏 is only considered if
attempts with shorter blocks have failed. However, PLR will
for instance consider a loop with blocks of size 3 and degree
0 before a loop with blocks of size 2 and degree 1.

4 Examples
All core mechanisms of PLR have been described. We can

now move to providing some illustration of its abilities.

4.1 Toy Examples
Our first examples are artificially designed with the sole goal
of illustrating the output of PLR. Here is a first one, whose
output is exactly the loop that we used to generate the trace:
for i0 = 0 to 10
val 7 + 3*i0 + 5*i0~2
for i1 = 0 to 8 + 1*i0~2

val 3 + 35*i0~2 + 11*i1 + 5*i0~2*i1 + 7*i0*i1~2

Loop counters are named according to their depth in the
resulting loop nest (i0, i1, . . . ) and binomial powers are
noted with the ~ operator. Note also that this loop has 10
iterations; loop upper bounds are always excluded.
Our next example is the values of 𝑥 2𝑦 2 , with (𝑥,𝑦) ∈

[−10, 10] × [−10, 10]. Here is a plot of this function:

-10
-5

 0
 5

 10 -10
-5

 0
 5

 10

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

The trace is generated by scanning the domain along 𝑥 and
𝑦. PLR outputs the following loop, which we have edited to
make it fit the width of this column:
for i0 = 0 to 21

for i1 = 0 to 21
val 3025 - 550*i0 + 55*i0~2

- 550*i1 + 100*i0*i1 - 10*i0~2*i1
+ 55*i1~2 - 10*i0*i1~2 + 1*i0~2*i1~2

This surprisingly copious result is actually exactly the expan-
sion of (i0−10) 2 (i1−10) 2 . PLR always produces normalized
loops, with lower bound zero and step one.

4.2 Array Memory Accesses
Our next example uses a trace of memory addresses. Here is
the setting. Assume we have a kernel that has been instru-
mented to produce a trace of all addresses it accesses, and
that uses a pre-allocated block of memory. Calling this kernel
requires 3 parameters 𝑁 ,𝑀 , and 𝑃 . Running the kernel with
𝑁 = 10, 𝑀 = 15, 𝑃 = 20 and passing the trace to PLR (or
NLR) produces the following loop:
for i0 = 0 to 10

for i1 = 0 to 20
for i2 = 0 to 15

val 0x560edc3692a0 + 120*i0 + 8*i2
val 0x560edc3699b0 + 8*i1 + 160*i2

val 0x560edc36a0c0 + 160*i0 + 8*i1

While this seems to show the effect of the parameters on loop
bounds, it is not clear how they affect the memory accesses.
Rather than playing a guessing game, we can run the same
kernel across a sample of the parameter space, collect a con-
catenated trace, and pass it to PLR. Here is pseudo-code to
produce a trace for this experiment, using the same arbitrary
range of values for all parameters:
for (N=10; N<15; N++)

for (M=10; M<15; M++)
for (P=10; P<15; P++)

kernel (N, M, P, ...);

The idea is to let PLR find regularities and interpolate across
the part of the parameter space so explored. Here is its output,
with base addresses elided for space reasons:

5



IMPACT 2025, January 22, Barcelona, Spain Alain Ketterlin

for i0 = 0 to 256
val S1 , 0x7ffec37b92a0 + 257*i0 , // tag , memory address

767*i0 + 506*i0~2 - 4*i0~3 , 1*i0 // global rank , local rank
for i1 = 0 to 1*i0
val S2 , 0x7ffec37b92a0 + 256*i0 + 1*i1 ,

1 + 767*i0 + 506*i0~2 - 4*i0~3 + 1*i1 , 1*i0~2 + 1*i1
val S3 , 0x7ffec38392b0 + 1*i0 ,

1 + 768*i0 + 506*i0~2 - 4*i0~3 , 1*i0
for i1 = 0 to 255 - 1*i0

val S4 , 0x7ffec37b92a1 + 257*i0 + 1*i1 ,
2 + 768*i0 + 506*i0~2 - 4*i0~3 + 3*i1 + 2*i0*i1 , 255*i0 - 1*i0~2 + 1*i1

for i2 = 0 to 1*i0
val S5a , 0x7ffec37b93a0 + 256*i0 + 256*i1 + 1*i2 ,

3 + 768*i0 + 506*i0~2 - 4*i0~3 + 3*i1 + 2*i0*i1 + 2*i2 , 254*i0~2 - 2*i0~3 + 1*i0*i1 + 1*i2
val S5b , 0x7ffec37b92a0 + 256*i0 + 1*i2 ,

4 + 768*i0 + 506*i0~2 - 4*i0~3 + 3*i1 + 2*i0*i1 + 2*i2 , 254*i0~2 - 2*i0~3 + 1*i0*i1 + 1*i2
val S6a , 0x7ffec38392b0 + 1*i0 ,

3 + 770*i0 + 506*i0~2 - 4*i0~3 + 3*i1 + 2*i0*i1 , 255*i0 - 1*i0~2 + 1*i1
val S6b , 0x7ffec37b93a0 + 257*i0 + 256*i1 ,

4 + 770*i0 + 506*i0~2 - 4*i0~3 + 3*i1 + 2*i0*i1 , 255*i0 - 1*i0~2 + 1*i1

Figure 1. PLR output for the Cholesky kernel trace including instruction ranks.

for i0 = 0 to 5
for i1 = 0 to 5

for i2 = 0 to 5
for i3 = 0 to 10 + 1*i0

for i4 = 0 to 10 + 1*i2
for i5 = 0 to 10 + 1*i1
val 0x[...]92a0 + 80*i3 + 8*i1*i3 + 8*i5
val 0x[...]99b0 + 8*i4 + 80*i5 + 8*i2*i5

val 0x[...]a0c0 + 80*i3 + 8*i2*i3 + 8*i4

PLR has correctly recognized the parameter space (over i0,
i1, and i2); then, three innermost loops constitute a single-
execution model like the one shown earlier. However, this
model is now parameterized by i0, i1, and i2, which act as
surrogates for 𝑁 ,𝑀 , and 𝑃 , and addresses have non-linear
expressions. Omitting the base address and the common 8
factor, these expressions can be understood as:

address major
index range

minor
index range

i3*(i1+10)+i5 i3 ∈ [0,i0+10) i5 ∈ [0,i1+10)
i5*(i2+10)+i4 i5 ∈ [0,i1+10) i4 ∈ [0,i2+10)
i3*(i2+10)+i4 i3 ∈ [0,i0+10) i4 ∈ [0,i2+10)

The non-linear terms appearing in the address expressions
hint at 2-dimensional arrays, and the ranges of the suspected
indices seem to confirm the hypothesis that memory accesses
are made inside three arrays of respective sizes:
(i0+10)×(i1+10), (i1+10)×(i2+10), and (i0+10)×(i2+10)

which involve only parameters and could be rewritten as
𝑁 ×𝑀 ,𝑀 ×𝑃 and 𝑁 ×𝑃 . (The kernel is what you think it is.)

The analysis we have done manually and informally here
is called array delinearization. It was first introduced and
formalized by Maslov [10]; see also Grosser et al. [6] for a
contemporary treatment in a polyhedral setting.

4.3 Instruction Ranks
One theoretical development of the polyhedral model that
requires the use of polynomials is counting the number of
integer points inside an arbitrary polyhedron. Two distinct
approaches have been developed [4, 14], and the related
problem of ranking instructions in a loop nest has enabled
new applications [5]. Our goal in this section is to evaluate
the ability of PLR to determine ranking polynomials while
recognizing loops in traces.
This experiment uses the Cholesky benchmark kernel

from the polybench suite version 3 [11]. Below is the source
loop, with labels on instructions:
for (i=0; i<n; ++i) {
S1: x = A[i][i];

for (j=0; j<=i-1; ++j)
S2: x -= A[i][j] * A[i][j];
S3: p[i] = 1.0 / sqrt(x);

for (j=i+1; j<n; ++j) {
S4: x = A[i][j];

for (k=0; k<=i-1; ++k)
S5: x -= A[j][k] * A[i][k];
S6: A[j][i] = x * p[i];
} }

This kernel was instrumented to produce a trace of all array
accesses it performs. Every address traced is tagged with the
corresponding instruction label, with a or b appended when
an instruction has two distinct accesses.

A complete trace was produced with 𝑛 = 256, containing
2𝑛 + 4𝑛 2 + 2𝑛 3 = 5,658,112 entries. After the trace is pro-
duced, each entry receives two additional fields: the first is
a sequential entry number (its global rank), the second is
a per-access sequential number (its “local” rank). The first
seven entries are:

6



Polynomial Loop Recognition in Traces IMPACT 2025, January 22, Barcelona, Spain

S1 0x7ffec37b92a0 0 0 S6b 0x7ffec37b93a0 4 0
S3 0x7ffec38392b0 1 0 S4 0x7ffec37b92a2 5 1
S4 0x7ffec37b92a1 2 0 S6a 0x7ffec38392b0 6 1
S6a 0x7ffec38392b0 3 0 ...

PLR takes about 5 seconds on a recent laptop to output the
loop shown in Figure 1. Note that ranks are represented
with polynomials of degrees up to 3; we have verified that
these polynomials conform to their statistically computed
versions [7]. PLR obtains an identical loop when certain
fields are omitted, as long as one of the first two fields is
present (for instance, with only the address and the global
rank). We consider this to be an excellent result.
Less stellar is the result when PLR is given a trace con-

taining only the last two fields (the global and local ranks).
Its abridged output is:

for i0 = 0 to 5
val 0 , 1*i0

for i0 = 0 to 254
for i1 = 0 to 3

val 1 + 1*i0 , 5 + 3*i0 + 1*i1
val 1 , 767
[...]
for i0 = 0 to 252
... (same loop as in Figure 1) ...

There is good news and bad news in this result. The good
news is that it ends with a loop capturing 252 out of 256
iterations. This is surprising given that the only information
present in the trace is ranking information; it means that a
pair of ranking polynomials somehow represents the loop
structure, and that PLR is able to extract this structure.
The bad news however is that the final loop is preceded

by about 35 stack items representing random anecdotal reg-
ularities, as the ones shown above. PLR, being greedy, was
mislead early on, and lost 4 full iterations before falling back
on the right track. But the early (anecdotal) loops are not
simply fragments of the “real” loop (the coping mechanism
of Section 1.3 would have corrected this), but are overlap-
ping and conflicting regularities that are more complex to
distinguish. We leave such problems for future investigation.

5 Final Remarks
A preliminary implementation of PLR is available from the
author; this implementation has been used to produce all ex-
amples in this paper. Both the tool and the use of polynomials
to model traces are fairly new, with very little experimental
evaluation or even relevance; we are welcoming any poten-
tial application that could make use of them.

Even though the first results presented here look promis-
ing, the representative power of polynomials makes it easy
to imagine scenarios where the current search strategy fails
to recognize regular behavior. The current approach, essen-
tially waiting for “big loops” to appear and then collecting
smaller pieces (see Section 1.3), has already been shown to

fail in some cases (see the end of the previous section). We
do not yet have a clear view on how fallible it is.

Finally, loop nests with polynomial bounds are notably ab-
sent from our experiments, with one insignificant exception
(the very first toy example in Section 4.1). We do not know
of any computation kernel using polynomial loop bounds,
or even any application where some phenomenon is studied
on a domain bounded by polynomials. Therefore, we may
very well have a tentative solution to a problem nobody has.
Nevertheless, polynomial loops are an obvious extension
of affine loops, and whether their study as an extension to
the polyhedral model will advance program analysis and
optimization remains to be seen.

References
[1] T. Augustine, J. Sarma, L.-N. Pouchet, and G. Rodríguez. 2019. Gen-

erating piecewise-regular code from irregular structures. In PLDI ’19.
doi: 10.1145/3314221.3314615

[2] D. Barthou, A. Charif Rubial, W. Jalby, S. Koliai, and C. Valensi. 2010.
Performance Tuning of x86 OpenMP Codes with MAQAO. In Tools for
High Performance Computing 2009, M. S. Müller, M.M. Resch, A. Schulz,
and W. E. Nagel (Eds.).

[3] C. Bastoul, A. Ketterlin, and V. Loechner. 2023. Superloop Scheduling:
Loop Optimization via Direct Statement Instance Reordering. In 13th
International Workshop on Polyhedral Compilation Techniques (IMPACT
2023, in conjunction with HiPEAC 2023). https://impact-workshop.org/
impact2023/#bastoul23-superloop

[4] P. Clauss. 1996. Counting Solutions to Linear and Nonlinear Con-
straints through Ehrhart Polynomials: Applications to Analyze and
Transform Scientific Programs. In ICS ’96. doi: 10.1145/237578.237617

[5] P. Clauss, E. Altintas, and M. Kuhn. 2017. Automatic Collapsing of
Non-Rectangular Loops. In IPDPS ’17. doi: 10.1109/IPDPS.2017.34

[6] T. Grosser, J. Ramanujam, L.-N. Pouchet, P. Sadayappan, and S. Pop.
2015. Optimistic Delinearization of Parametrically Sized Arrays. In
ICS ’15. doi: 10.1145/2751205.2751248

[7] A. Ketterlin. 2024. Easy Counting and Ranking for Simple Loops.
In 14th International Workshop on Polyhedral Compilation Techniques
(IMPACT 2024, in conjunction with HiPEAC 2024). https://impact-
workshop.org/impact2024/#ketterlin24-counting

[8] A. Ketterlin and P. Clauss. 2008. Prediction and trace compression of
data access addresses through nested loop recognition. In CGO ’08.
doi: 10.1145/1356058.1356071

[9] S. Kobeissi, A. Ketterlin, and P. Clauss. 2020. Rec2Poly: Converting Re-
cursions to Polyhedral Optimized Loops Using an Inspector-Executor
Strategy. In Embedded Computer Systems: Architectures, Modeling, and
Simulation, A. Orailoglu, M. Jung, and M. Reichenbach (Eds.).

[10] V. Maslov. 1992. Delinearization: an efficient way to break multiloop
dependence equations. In PLDI ’92. doi: 10.1145/143095.143130

[11] L. N. Pouchet and T. Yuki. 2023. PolyBench/C. Retrieved September 1,
2023 from https://sourceforge.net/projects/polybench/

[12] G. Rodríguez, J. M. Andión, M. T. Kandemir, and J. Touriño.
2016. Trace-based affine reconstruction of codes. In CGO ’16. doi:
10.1145/2854038.2854056

[13] H. Thievenaz, K. Kimura, and C. Alias. 2022. Lightweight Array
Contraction by Trace-Based Polyhedral Analysis. In High Perfor-
mance Computing. ISC High Performance 2022 International Workshops,
H. Anzt, A. Bienz, P. Luszczek, and M. Baboulin (Eds.).

[14] S. Verdoolaege, R. Seghir, K. Beyls, V. Loechner, and M. Bruynooghe.
2007. Counting Integer Points in Parametric Polytopes Using Barvi-
nok’s Rational Functions. Algorithmica 48 (05 2007), 37–66. doi:
10.1007/s00453-006-1231-0

7

https://doi.org/10.1145/3314221.3314615
https://impact-workshop.org/impact2023/#bastoul23-superloop
https://impact-workshop.org/impact2023/#bastoul23-superloop
https://doi.org/10.1145/237578.237617
https://doi.org/10.1109/IPDPS.2017.34
https://doi.org/10.1145/2751205.2751248
https://impact-workshop.org/impact2024/#ketterlin24-counting
https://impact-workshop.org/impact2024/#ketterlin24-counting
https://doi.org/10.1145/1356058.1356071
https://doi.org/10.1145/143095.143130
https://sourceforge.net/projects/polybench/
https://doi.org/10.1145/2854038.2854056
https://doi.org/10.1145/2854038.2854056
https://doi.org/10.1007/s00453-006-1231-0
https://doi.org/10.1007/s00453-006-1231-0

	Abstract
	1 Background on NLR
	1.1 The Algorithm
	1.2 Recognizing Loops and Iterations
	1.3 Corner Cases

	2 Integer Polynomial Interpolation
	2.1 Integer Polynomials and Naive Interpolation
	2.2 Difference-Based Interpolation

	3 Polynomial Loop Recognition
	3.1 Polynomial Loops
	3.2 Updating the Search Strategy

	4 Examples
	4.1 Toy Examples
	4.2 Array Memory Accesses
	4.3 Instruction Ranks

	5 Final Remarks
	References

