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Abstract

Polyhedral schedulers present well established techniques to
extract parallelism, improve data locality, and generate tiled
code for statically analyzable loops. However, as the polyhe-
dral model abstracts programs in a mathematical represen-
tation detached from language, architectural, and hardware
specific constraints, encoding vectorization in an affine form
can prove challenging.

In this paper, we present an approach to integrate infor-
mation on vectorization decisions made by an SLP algo-
rithm (Autovesk) into a polyhedral compiler (Pluto) through
the addition of constraints to the schedule. We execute the
SLP vectorization algorithm preserving annotated statement
instance information. From its output, we create a set of
constraints aiming to enforce vectorization. These optional
constraints are injected during the scheduling process of
the polyhedral compiler. We evaluate the performance and
make use of hardware counters to check the relevancy of
our method on the Polybench/C suite.
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1 Introduction

The polyhedral model enables the representation of com-
putational kernels made up of statically analyzable nested
loops presenting static control parts through mathematical
abstractions. The representation is composed of several el-
ements, aiming to completely describe a program through
a set of parametrized polyhedra. More precisely, individual
statements within a program made up of nested loops with
static control parts (SCoPs) are represented by their domains,
memory accesses, and scheduling, from which additional
properties such as data dependencies can be extracted. This
mathematical representation can then be manipulated to
produce transformations on the initial program that can be
the result of explorative composition of transformations [9],
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or from the formulation and solving of Integer Linear Pro-
gramming (ILP) problems [7].

Since many computational applications used in research
contain computational kernels that can be represented in
the polyhedral model, this approach has remained a leading
method for automatic program optimization since it was
introduced.

Today, there are several widely used implementations of
schedulers using the polyhedral model. Their benefits in-
clude the extraction of thread level parallelism and data
locality optimization, like in Pluto [6], and transformations
for GPU execution, as in PPCG [22]. The implementation
of such scheduling algorithms relies on other tools for in-
put program parsing [2, 23], internal representation [3, 21],
or code generation [1]. Polyhedral schedulers can be imple-
mented in a high-level source to source workflow, or directly
into low-level compilers, through the use of Intermediate-
Representations (IR) [8, 14]. In both cases, kernels are sched-
uled into a transformed program, and further optimizations
such as vectorization are often delegated to the back-end
compiler, sometimes guided by the polyhedral scheduler. In
this paper, we will present an approach to integrate insights
on vectorization opportunities generated from an SLP algo-
rithm into a polyhedral scheduler through the addition of
constraints to the ILP formulation.

All recent architectures offer some implementation of vec-
tor instructions. To exploit these instruction sets, vectoriza-
tion algorithms are being implemented in modern compilers.
These algorithms can be divided into two categories:

e Loop vectorizers. When looking at programs struc-
tured by loops, it is possible to perform a dependency
analysis between iterations of the same statement. If
deemed possible, the loop is then stripmined by the
available vector length, and consecutive iterations are
grouped into vector instructions. This approach en-
ables coarse-grained optimizations when there are no
dependencies between consecutive iterations of a loop,
but is limited by the fact it attempts only to group in-
stances of the same instruction together. This approach
is used in most polyhedral compilers when attempt-
ing to extract vectorization. In Polly [8] loops that



IMPACT, January 28th, 2026 , Krakow, Poland

are trivially vectorizable are emitted as vector instruc-
tions, and in Pluto [6] vector directives are generated
whenever the innermost loop can be parallelized.

e Superword Level Parallelism (SLP) vectorizers. In the
case of more complex programs, grouping instances
of the same instruction may be difficult due to de-
pendencies or to the structure of the program. To
tackle this, another family of vectorizers performs op-
timizations on sequences of instructions. SLP vector-
izers [11, 13, 16, 17, 19] aim to group scalar instruc-
tions that perform arithmetic operations into the corre-
sponding vector instructions by packing. Here, values
may need to be gathered/scattered in vector registers
before executing a vector instruction. This results in
an average lesser gain in execution time than loop-
vectorizers because of the overhead of gathering/scat-
tering values, but can enable vectorization where loop
vectorizers fail.

In practice, both types of vectorizers are implemented
within compilers, with a loop-based vectorizer performing a
first coarse-grained generation of vector instructions. Then,
an SLP algorithm is run on the remaining scalar instructions.
Such a system is implemented in, e.g., GCC and Clang [18].

The main reason leading SLP vectorizers to be imple-
mented alongside loop vectorizers within compilers is scala-
bility. While SLP vectorizers can extract more vectorization
opportunities, executing them on large programs can lead to
long compilation times. As they take as input a sequence of
instructions, all the control flow must be removed from the
input program. In practice, this means that we need to unroll
all loops of a program before executing such an algorithm,
leading to a large number of instructions. This, in turn, leads
to a combinatorial explosion, with complexity growing ex-
ponentially with the number of instructions in the original
program. Instead, the loop vectorizers perform all possible
transformations within their framework, and the remaining
scalar instructions are handled by an SLP algorithm. Fur-
thermore, the optimizations produced by SLP vectorizers are
dependent on the fixed parameters of the program. Being
able to generalize such transformations in a parametrized
context through the polyhedral model would alleviate the
computational constraints of straight-line vectorizers. Such
an approach was theorized by Bastoul et al. [4].

As mentioned above, polyhedral schedulers are well tai-
lored to extract thread level parallelism, but either rely on
the algorithms implemented within compiler vectorization
passes, or can only extract loop vectorization. As such, trans-
formations generated by polyhedral techniques are mostly
agnostic to low-level optimizations. Let us consider the tri-
solv kernel from the PolyBench/C [25] as shown in fig. 1.
The kernel, when scheduled with Pluto as shown in fig. 1b,
presents dependencies on its innermost loop and therefore
cannot be vectorized. Instead, if we schedule the code as
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for (i = 0; i < N; i++)
x[il] b[il; //51
for (j = @; j < i; j++)
x[i] -= LLi1Cj] » x[3] //S2
x[il = x[il / LLilLi] //S3

(a) Original code

for (i = @0; i < N; i++)
x[i] = b[i]
x[@] = x[e] / L[e][e]
for (i = 1; i < N ; i++)
for (j = 0; j < i; j++)
x[il -= LLiJ[3] * x[3j] //S2
x[i] = x[il / LCi]1[1i]

(b) Code generated by Pluto

for (i=0; i < N; i++)

x[i] = b[il]
for (i = 0; i < N-1 ; i++)
x[i] = x[i] / LL[il[i]

for (j = i+1; j < N; j++)
x[jl -= LLjI0i] = x[i] //S2
x[N-1] = x[N-11 / LIN-T]J[N-1]

(c) Code generated by our approach

Figure 1. Example: trisolv from the PolyBench/C suite

shown in fig. 1c, interchanging the i and j accesses, we ob-
tain a loop that can be vectorized along the new j dimension.

We propose an approach to integrate information extracted
from the result of an SLP algorithm to constrain the solution
space of a polyhedral scheduler. As mentioned above, SLP
algorithms are hardly scalable, and as such, we execute a
vectorizer on kernels parametrized with small problem sizes.
The results are then converted into scheduling constraints
for a polyhedral compiler, with the aim of generalizing the
transformation to a parametrized model. We will present the
approach and evaluate the relevant metrics with the aim of
transforming programs to generate more vector instructions
once compiled. In carrying out this study, this work brings
the following contributions:

e The extension of an SLP vectorizer to be able to track
how vectorized instructions relate to the original state-
ment instance instructions.

e An algorithm to select the preferred vectorization di-
mensions for each statement.

e A modified version of the Pluto algorithm with ex-
tra constraints to take into account the vectorization
dimension when possible.
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e An analysis of how prioritizing vectorization in Pluto’s
schedule modifies execution time performance, which
we experiment on the PolyBench/C benchmarks.

The rest of the paper is organized as follows. In section 2,
we present the context and related work. In section 3, we
explain our method to detect the vectorization opportunities
and how it can be integrated into the Pluto scheduling pro-
cess. Section 4 is devoted to the evaluation, and section 5 to
the discussion of the results.

2 Context & Related work
2.1 Polyhedral schedulers

There exist many implementations of polyhedral schedulers
ranging from source to source applications [6, 24], runtime
systems [12] and implementations within compilation flows [8,
14]. In the general landscape of polyhedral schedulers, Pluto
has remained a state of the art optimizer, enabling tiling
and loop-fusion heuristics through its set of constraints. It
also provides a comprehensive library to implement further
modifications. Hence, we have chosen it as a base for our
implementation, with the objective to preserve its benefits.

2.2 Modeling vectorization within polyhedral
schedulers

Beyond general purpose polyhedral compilers, some work
has focused on integrating additional scheduling constraints
into the ILP formulations specifically for vectorization. The
first way to add additional constraints is through objective
functions, representing properties of the program, that are
then minimized or maximized when solving the ILP. Such
an approach has been proposed by Kong. et al. [10] and
enforces parallelism on the innermost loop while maximiz-
ing stride-0/1 references. Another approach, proposed by
Zinenko et al. [26], includes objective functions to model
temporal and spatial locality as separate objective variables
while including non-linear decisions on the ordering of con-
straints. Trifunovic et al. [20] proposes a modeling of the
impact of loop transformations on vectorization through a
cost model, used to direct loop transformations.

Bastoul et al. [5] expand on these ideas by abstracting
transformations in the form of a tree encoding explorative
constraint injection and relaxation. The framework supports
objective functions, as well as simple linear constraints gen-
erated from non-linear optimizers, in this case a cost function
modeling load/store vectorization, strides, and thread distri-
bution for GPU.

While our approach shares similarities with these previ-
ous projects, it differs in some key aspects. First, we delegate
decisions on vectorization to an SLP optimizer. Furthermore,
the constraints built from the output of the SLP algorithm
only model vectorization, and take the form of simple linear
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constraints instead of objective functions. Finally, we only en-
force additional constraints within the scope of the existing
ILP formulation and do not modify the other constraints.

2.3 SLP algorithms

As mentioned in the previous section, SLP algorithms work
by aggregating instructions into groups to form vector in-
structions. There exists a number of algorithms in this family,
stemming from the work of Larsen and Amarasinghe [11],
and several other implementations have been developed
including LSLP [17], taking into account commutative opera-
tions, and SN-SLP [16], considering the inverse of arithmetic
operations. goSLP [13] provides cost-modeling of vector
packing operations through ILP formulations. An SLP al-
gorithm is included in LLVM/Clang within the vectorization
passes, inspired by the implementation present in GCC [18].
However, this implementation can prove difficult to work
with as the SLP algorithm works conjunctly with a loop
vectorizer, rendering isolation of the SLP pass tedious.

2.4 Autovesk

Autovesk [19] is a stand-alone auto-vectorizer project that
fits into the SLP family. Autovesk works by aggregating all
instructions that perform the same operation and that are
independent with respect to each other. It eliminates the con-
sideration of variables and control through its representation
as a flow of operations stemming from loads and leading to
stores. The programs are represented through graphs of in-
structions generated by templates and operator overloading,
this effectively removes all control flow. Nodes in the graph,
representing operations, are aggregated when they perform
the same operation and are independent. The aggregated
nodes can contain any number of operations, and are subse-
quently split along the vector size using a cost model aiming
to minimize the total number of nodes in the graph. While
Autovesk has been tested and yielded good results on simple
and short kernels, it has not been tested on more complex
polyhedral benchmarks. It also suffers from a high computa-
tional complexity which prevents its use on large programs.
However, we will see that this limitation does not hinder our
approach. In the following work, we have used Autovesk for
SLP vectorization, taking advantage of the extensibility it
offers through its template-based design.

3 Approach

The proposed approach can be split into three steps/compo-
nents:

1. A modified version of the Autovesk vectorization al-
gorithm that enables tracking of original statement
instance information through instruction annotations;

2. A decision algorithm that selects preferred vectoriza-
tion dimensions and generates configuration files iden-
tifying the preferred dimension for each statement;
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3. A modified version of the Pluto algorithm with added
constraints to the ILP formulation, directed by the
configuration files.

3.1 Using Autovesk to generate program traces

Because Autovesk creates its instruction graphs by running
the kernels, generating a node at each operation encoun-
tered, it effectively removes all the control flow from an
input program. Because of the complexity issue mentioned
in section 1, and to keep execution times low, we run the
vectorizer on a reduced with all parameters set to eight. As
we want to formulate constraints for a polyhedral scheduler,
we want to retain some information about the original loops
during the vectorization process. A statement in a loop nest
is executed several times, and the polyhedral model treats
these executions as occurrences, or instances, of the same
instruction at different points in the iteration space. To store
information about the original control flow, we annotate the
nodes corresponding to each instance of a statement through
additional overloading of Autovesk’s templates. Each state-
ment instance is marked with its corresponding statement
number and iterator values. It is possible that a statement,
as considered when analyzing the source code with a Scop
extraction tool, may comprise several arithmetic operations.
When this is the case, we attach the annotations on the last
executed operation.

Once all statements have been annotated, we run the vec-
torization algorithm, and the annotations are propagated
to the generated vector nodes from the scalar nodes. In the
end, we obtain a graph of vector instructions, with some
of the nodes including annotations on the original instruc-
tions of the input program. Instead of generating intrinsics,
as originally implemented in Autovesk, we only output the
annotated statement instances, which yields a vectorized ex-
ecution trace, as shown in fig. 2a. We see iterator values and
statement numbers corresponding to statement instances of
the original program. Instances that are vectorized in the
same vector instruction are shown enclosed by Vec Node
and End comments.

3.2 Extracting intra-node information on
vectorization decisions

Autovesk’s output takes the form of a directed acyclic graph,
whose nodes represent arithmetic, vector, or memory op-
erations, and edges encode dependencies. This graph only
provides a partial order on the execution of the instructions
of the program. When generating intrinsics, the last step of
Autovesk is to schedule the graph using a simple algorithm
minimizing register load. Since we are only interested in
vectorization opportunities, i.e. the innermost scheduling
dimension, we will only take into account the intra-node
information, and stop Autovesk before this step. To this end,
we propose a simple algorithm that selects the preferred
vectorization dimension.
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// Vec node 1:
S1 51 0 .

S1: [+1, +0, +0]
ST61 0§Sl'+1+0+0
S1 710 ([ +0.+0]
S1 0 2 0 S1: [+0, +1, +0]
// End
// Vec node 2:
S2 1 0

S2: [+1, +0]
S2 2 029
S1 310

S1: [+1, +0, +0]
S1 4 1 0?
// End

S1: [3, 1, @]
s2: [1, o]

(b) Sum of increments for each dimension

S1
100
S2

(c) Configuration file generated

Figure 2. Generation of configuration files from program
traces

To illustrate the algorithm, let us consider the example in
fig. 2. Figure 2a shows a sample partial trace of an arbitrary
program, containing two vector nodes made up of two state-
ments S1 and S2. For every consecutive instance of the same
statement within a vector node, we count the occurrences
of increments by one for each iterator. In this case, the first
vector node presents two instances of an increment in the
first iterator and one instance in the second iterator. For the
second node, there is an increment of one in the first dimen-
sion of S2 and S1. We add the total number of increments
for each statement dimension across all nodes, as shown in
fig. 2b. The dimension with the highest count, i.e. the one
that is the most frequently recurring in the vector nodes is
selected to be the vectorization dimension for that statement.
Figure 2c shows the configuration file generated by the algo-
rithm, a value of one in a dimension indicates that we will
try to vectorize it for this statement, as explained in the next
subsection.

The extraction algorithm selects at most one dimension
per statement. This constitutes a naive approach, as it does
not take into account potential interleaving of the statements
within the vector nodes. Considering that we only want to
direct the polyhedral scheduling process through simple con-
straints, and that complex interleaving patterns may not be
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expressible by linear constraints, we keep this simple repre-
sentation with the objective that the other Pluto constraints
will improve data locality and parallelism.

3.3 Generating constraints with Pluto

The Pluto algorithm works by iteratively solving an ILP for-
mulation comprising a set of constraints, namely the legality
constraint and the volume bounding constraint. The same
ILP formulation is solved several times while adding linear
independence constraints. This creates a permutable band of
several scheduling dimensions representing loops that can
be interchanged one with another. Once there are no longer
any linearly independent solutions to the ILP, satisfied de-
pendencies are removed from the problem and the process
starts over. If there is no solution to the problem, a heuristic
operates a splitting of the dependency graph into its strongly
connected components.

Based on the configuration file generated in the previous
step, we want to ensure that the preferred dimension for vec-
torization is scheduled as the innermost loop. To ensure this,
we can add the following constraint to the ILP formulation
at each step.

Let us consider a single statement S of dimensionality m,
its schedule 65 can be written as follows:

- S S S SN/7 S
Os(is) = (¢}, ¢5,¢5,...,c)(is) + ¢,

is€Z

(1)

where the ¢’ are the scheduling coefficients of S. If dimension
k is constrained by our configuration file, we enforce:

=0 2)

for the first m—1 linearly independent solutions to the ILP for-
mulation. This ensures that the last coefficient in the schedule
for S will present a component in the desired dimension k.

Due to the way we generate the configuration files, the
preferred dimension for vectorization can prove impossible
to enforce, for example when many nodes remain scalar
due to dependencies. This is for instance the case with the
seidel-2d kernel as shown in fig. 3.

Here, the only vector nodes generated by Autovesk ap-
pear between iterations of the outermost loop (as shown in
fig. 3b), the other statement instances remaining scalar. The
last iteration of the i, j loops for a given t is packed with
the first i, j iteration at t+1. The algorithm that generates
the configuration files treats this as a preferred vectorization
dimension in t as shown in fig. 3c. When trying to apply this
configuration file to all iterations of this statement, Pluto is
unable to solve the ILP, as dependencies prevent finding of
any valid schedule.

When encountering this problem, we apply a constraint
relaxation algorithm. When Pluto yields no solution because
the generated ILP cannot be solved, we remove the vector-
ization constraints one by one, in the order of the statements,
until a solution is found. Once a solution is found, constraints

IMPACT, January 28th, 2026 , Krakow, Poland

for (t = @; t <= T_STEPS - 1; t++)
for (i = 1; i <= N - 2; i++)
for (j = 1; j <= N - 2; j++)

ALiJC3j] = (ALi-11L0j-11+ALi-11L5j1+
ALi-110j+11+ALiI0j-11+ALi105]+
ACLIILj+11+ACi+1]03-11+ACi+1]0] 0+
ALi+1J[j+11)/SCALAR_VAL (9.0);

(a) Seidel-2d kernel

// Vec node:
S1
S1
//
S1
S1
S1
S1
//
S1
S1
//

S

]
S
J Qe

m-_- o< oo N = m-=
=} @

Q = 0O WN = NOQ
NS MO =N

(b) Partial trace generated by Autovesk

(c) Generated configuration file

Figure 3. Configuration file generation for the Seidel-2d
benchmark

that were relaxed are reintroduced until there is no longer
any solution again. This solution converges towards a good
approximation of the maximal number of constraints we can
add, while eliminating those that render the ILP solution
empty.

4 Evaluation
4.1 Experimental setup

We ran our experiments on an Intel 12th gen i7-12700H
processor, with 6 P-Cores and 8 E-cores and 64GB of RAM.
Our experiments were run on a single thread mapped to a
P-Core, with 80KB, 1.25MB and 24MB of L1, L2 and L3 cache
sizes, respectively. The largest vector instruction available
set is AVX2.

The approach was evaluated on the kernels from the Poly-
bench/C, excluding nussinov and deriche, which uses opera-
tions that cannot be modeled in Autovesk.

As mentioned in section 2.4, running Autovesk on large
kernels is untractable due to its excessive complexity. Our
objective being the generalization of non-parametrized trans-
formations, we run the vectorizer on kernels with very small
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Figure 4. Sequential speedup of Pluto-vec over Pluto

problem sizes. We set all parameters of the kernels to 8,
which, given a desired vector size of 4, guarantees that state-
ments need at least two vector nodes per iteration dimension
to be completely scheduled.

After generating the configuration files, we ran Pluto
with and without the configuration files using the options
-noparallel -tile-nounrolljam-prevector —smartfuse
to generate scheduled kernels for comparison between our
approach and vanilla Pluto.

We used a modified dataset, with sizes adjusted up
from the EXTRALARGE dataset in order to obtain execu-
tion times greater than a second. The kernels were run
using double precision floats. We compiled with Clang,
GCC and ICC using the options -03 -march=native
-mprefer-vector-width=256 -ffast-math. The cache is
flushed before running each benchmark. The time measure-
ment utility packaged with PolyBench was used to gather
execution times, running each benchmark five times, elimi-
nating the lowest and highest, and averaging the three re-
maining measurements.

To gather additional information on vector and scalar
arithmetic operations, cache misses, and loads/stores, we
used the perf-cpp [15] library that enables profiling on spe-
cific parts of programs through wrappers on kernel func-
tions.

4.2 Results

The speedups of our modified Pluto algorithm with addi-
tional constraints compared to the unmodified version are

shown in fig. 4. For clarity, we will differentiate between the
base version of Pluto and call our implementation Pluto-vec.
When running the schedulers on our benchmark suite, two
kernels, adi and ludcmp could not be scheduled by either
version of Pluto and fell back to the original schedule. Eight
kernels produce the same schedule in Pluto-vec as Pluto
without added constraints. Namely: durbin, floyd-warshall,
gesummy, heat-3d, jacobi-1d, jacobi-2d, seidel-2d, and syr2k.
We will analyze the eighteen remaining kernels where the
code generated by Pluto-vec differs from Pluto.

Let us examine the number of arithmetic vector opera-
tions generated for the kernels as shown in fig. 5. We observe
that for cholesky and trisolv, the Pluto-vec transformed code
does enable GCC to generate a significant number of vector
instructions, while Pluto does not. However, despite this vec-
torization, no speedup is observed on these kernels. In other
benchmarks, the number of vector instructions generated
remains the same but yields contrasted results regarding
execution time speedup. For instance, for mvt which no com-
piler can vectorize, Pluto-vec transformed code shows about
half the performance of the Pluto optimized code. By con-
strast, we get a 4x speedup on symm without any change
in the number of arithmetic vector operations executed. We
observe that, in this experiment, the number of vector arith-
metic operations is not directly correlated with the program
performance.

To delve further into this analysis, the gains and losses
in performance can be explained by looking at other met-
rics, namely cache misses and loads/stores. If we look at the
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Figure 5. Number of arithmetic vector operations generated
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Figure 6. Number of cache misses
number of cache misses as shown in fig. 6, we observe that time. This is for instance the case in cholesky and trisolv,
cache misses are often correlated to performance. Kernels where our approach yields vectorization but the produced
producing fewer cache misses with Pluto-vec yield speedups schedule leads to a higher cache miss count.

while those producing more yield slowdowns. Above a cer-
tain threshold, cache misses negatively impact execution
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Figure 7. Number of loads and stores

From our performance analysis, we can also extract the
number of loads and stores. As there are no separate hard-
ware counters for vector and scalar memory operations, we
can only infer a higher vectorization count if the number
of loads and stores varies between Pluto and Pluto-vec. Fig-
ure 7 shows the data on five kernels that present significant
differences in total memory operations. cholesky and trisolv
present a lower count of memory operations for GCC, which
is consistent with the previous results on the number of vec-
tor operations considering we have enabled vectorization
for those kernels. symm performs fewer memory operations
across all compilers with our approach, which, considering
it also produces fewer cache misses, explains the speedup. In
lu we generate fewer memory operations with ICC, which is
consistent with the number of arithmetic vector operations
generated. In fdtd-2d we generate more memory vector oper-
ations but because our transformed code incurs a very high
number of cache misses, the overall effect is still a slowdown.

5 Discussion

Overall, our approach improves the number of vector instruc-
tions generated on many kernels. It enables the generation
of more arithmetic vector operations or more memory vec-
tor operations, or both. However, as shown in the previous
section, the number of vector instructions generated is not
directly correlated with performance gains. On the eighteen
kernels analyzed in the previous section, ten yield a speedup
and eight result in a slowdown. And the remaining kernels
yield the same schedule as Pluto.

Even when Pluto-vec enables compilers to generate more
vector instructions in the final compiled code, losses in data
locality can outweigh the benefits. Vectorizing statements
along dimensions that produce cache-misses lead to perfor-
mance drops. Adding additional constraints to the scheduling
dimensions with the goal of improving vectorization can dis-
rupt data locality. As data locality is not taken into account
by our approach, we obtain speedups where Pluto can pre-
serve it and slowdowns where the added constraints hinder
it.
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In the trisolv example from section 1, shown in fig. 1c,
our Pluto-vec transformation enables vectorization on the j
dimension, but, as our results show, this does not improve
performance. The reason is that the inner instruction reads
one value from a different row of array L each time, po-
tentially requiring the invalidation and reloading the corre-
sponding cache line at each iteration of the j loop, hence
voiding vectorization benefits.

6 Conclusion & Perspectives

This paper introduces a way of adding schedule constraints
inferred from the results of a low level vectorization algo-
rithm into the constraint system of polyhedral schedulers.

We have demonstrated its efficiency in terms of increase
in the number of an vector instructions generated when
compiling the output of polyhedral schedulers. However,
the benefits of vectorization can be outweighed by losses in
data locality. Also, our approach does not ensure preserva-
tion of the benefits on data locality resulting from Pluto’s
constraints.

In some cases, our approach yields the same results as
Pluto, which does not directly enforce vectorization during
the scheduling process. Instead, it relies on post-processing
of the detected permutable loops. This means that our addi-
tional constraints were able to enforce decisions improving
vectorization during the iterative scheduling process, and
not at a post-processing step once the schedule has already
been found.

Going further in this work, the approach would bene-
fit from the implementation of finer-grained injected con-
straints. These constraints could better represent the vector
packing found by SLP algorithms, for example presenting
scalar dimensions enforcing potential interleaving of the
statements through fusion of the innermost loops.

Furthermore, our approach only takes into account vector-
ization and, as we have shown, other factors such as cache
locality or memory layout also influence the performance.
We aim to expand our constraint generation algorithm to
take into account such factors.
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