Z-Polyhedra and LBLs in PolyLib

Vincent Loechner
Dhimiter Riza
ICube, Université de Strasbourg, and Inria CAMUS
Illkirch, France

Abstract

Z-polyhedra and linearly bounded lattices (LBLs) provide
expressive representations for sets of integer points beyond
classical rational or integer polyhedra. Although Z-polyhedra
were introduced in PolyLib more than two decades ago, their
implementation was limited and did not support robust ma-
nipulation of general unions of Z-polyhedra or LBLs.

In this paper, we present a sound, complete and unified im-
plementation of Z-polyhedra, LBLs, and their finite unions
in PolyLib. Our approach relies on the representation of
an LBL as the affine lattice function image of a coordinate
polyhedron. A normalization scheme enables union, inter-
section, difference, image, preimage, inclusion testing, and
conversion of a union of LBLs to a union of Z-domains. Our
implementation is using efficient algorithms whenever pos-
sible but is also able to compute the most complex by nature
cases, carefully handling lattice normalization, equality elim-
ination and holes. It has been validated on a wide range of
test cases.

This work significantly extends PolyLib’s capabilities and
makes advanced lattice-based representations practically
usable in polyhedral compilation and related applications.

ACM Reference Format:

Vincent Loechner and Dhimiter Riza. January, 28, 2026. Z-Polyhedra
and LBLs in PolyLib. In Proceedings of 16th International Workshop
on Polyhedral Compilation Techniques (IMPACT ’26). ACM, New
York, NY, USA, 8 pages.

1 Introduction

The polyhedral library (or PolyLib) [6, 10] is a library that
was first developed in the 1990’s to manipulate finite unions
of rational polyhedra based on the double description of
Motzkin. Z-polyhedra were added to PolyLib in 2000 [7]
using the algorithms introduced by Quinton, Rajopadhye
and Risset [9] that represent a Z-polyhedron as the intersec-
tion of an integer lattice and a polyhedron. Later works by
Gautam [1, 2] used a representation of a Z-polyhedron close
to the one of an LBL, as the affine image by a full column
Hermite-normal form (HNF) matrix of a full-dimensional
integer polyhedron (the coordinate polyhedron):

Z:{Lx+l‘Cx+c20,x€Zd}

IMPACT °26, 2026, Krakow, Poland
January, 28, 2026.

This is possible since Z-polyhedra is a subclass of LBLs:
every Z-polyhedron can be represented as an LBL. How-
ever, computing a full-dimensional integer coordinate poly-
hedron of any LBL is NP-hard, as pointed out by Iooss and
Rajopadhye [3]. In their work, Iooss and Rajopadhye used
the same representation of a Z-polyhedron as an image by a
lattice function, but they dropped the condition to be canon-
ical that the integer coordinate polyhedron should be full-
dimensional, at the price of more complex comparison and
image algorithms.

We used some of those ideas to implement the complete
set of operations on unions of LBLs and Z-polyhedra in
PolyLib. We extended Gautam’s work to handle some unfore-
seen issues; extended Iooss and Rajopadhye’s canonical form
definition; and implemented the existential variable elimina-
tion to transform an LBL into a union of Z-polyhedra. The
main functions available to the user are: LBLIntersection,
LBLUnion, LBLIncluded, LBLDifference, LBLImage, LBL-
Preimage, LBL2ZDomain, and LBLSimplifyEmpty.

The normalization of a single LBL, presented in section 4,
is the cornerstone that allows easy implementation of those
basic functions. It sets the lattice matrix to affine Hermite
normal form and eliminates the explicit equalities of the
coordinate polyhedron, but keeps the columns of zeros in
the lattice function that are necessary to preserve the “holes™
it only eliminates the columns of zeros when the sufficient
condition to eliminate a dimension that the dark shadow is
equal to the exact shadow is verified, as shown by Pugh [8].

The transformation of an LBL into a union of Z-polyhedra
(function LBL2ZDomain) further eliminates all existential
variables and all zero columns of the lattice. However, this
operation is known to be very costly in the worst case, in
computation time and in output size. For each dimension
that has to be eliminated, when the dark shadow does not
cover the exact shadow, we need to explicitly compute the
union of points that are lying in the difference between the
exact shadow and the dark shadow and that are not holes.

This paper first summarize related work in section 2,
then recalls some mathematical background in section 3.
We present our representation of normal LBLs and their
unions in section 4, and section 5 details the algorithms im-
plemented in the PolyLib new operations on lattices, single
LBLs and union of LBLs.

IMPACT ’26, 2026, Krakow, Poland

2 Related work

In 1991, Pugh [8] implemented a fast and practical integer
linear programming (ILP) solver known as the Omega test. It
allows one to decide whether a set of constraints containing
integer existential variables admits an integer solution. He
also proposed a sufficient condition for the fast elimination
of an existential variable: if the exact (rational) shadow of
the eliminated variable is covered by its dark shadow —a
thick-face-like projection that guarantees that all projected
points have at least one integer preimage— then the variable
can be removed. We reuse this idea to eliminate existential
variables and reduce the dimensionality of the coordinate
polyhedra in our representation.

In 1997, Quinton, Rajopadhye and Risset [9] proposed a
set of algorithms to handle Z-polyhedra, represented as the
intersection of an integer lattice and a polyhedron. These
algorithms were implemented in PolyLib in 2000 [7], but
this implementation suffers from several limitations: only
unimodular transformations were supported, existential vari-
able elimination was not available, general LBLs were not
handled, and the implementation is no longer maintained.

Gautam and Rajopadhye [1, 2] proposed a set of algorithms
that handle general LBLs, with Z-polyhedra as a subclass
of this more general class of objects, using a unified repre-
sentation as the image by an affine lattice function of an
integer polyhedron. However, this theoretical work was not
implemented, and some of the proposed algorithms exhibit
unforeseen issues.

Iooss and Rajopadhye [3] implemented the LBLs using the
same representation as Gautam in a Java library included
in AlphaZ. Our work is the closest to this approach, how-
ever, this implementation appears no longer maintained or
distributed.

Building on these prior efforts, our work now provides an
efficient, general and unified implementation of Z-polyhedra,
LBLs, and their unions, now broadly available to users through
its integration into PolyLib [5].

3 Mathematical Background
3.1 Integer Affine Function and Lattice

An integer affine function or lattice function is represented
as an integer matrix M and a constant integer vector m. The
affine lattice generated by such a function is a subset of Z"
and follows the form:

3{={Mz+m|z€Zd}

If the columns of matrix M are linearly independent they
constitute a basis of the generated lattice, and m is its offset.

To be in canonical form M and m have to satisfy the con-
dition that the matrix

Vincent Loechner and Dhimiter Riza

is in column left Hermite normal form (HNF): it is lower
triangular, and all elements on the left of the pivots (the first
nonzero entries of the columns) are in the interval [0, pivot].
Any matrix generating a lattice can be transformed into its
unique HNF, which is unimodular-equivalent to the original
matrix.

Notice that the canonical matrix M is not necessarily
square: it can have more rows than columns, in which case
the function spreads points to a higher dimension target
space than the origin space. Also notice that M might con-
tain columns of zeros on its right. This happens when a
dimension of the origin space is eliminated by the function;
since matrix M is lower triangular, those zero columns are
necessarily on the right of the matrix.

The canonical form ensures uniqueness of the non zero
columns of M: due to the properties of the HNF, two func-
tions spreading the same lattice yield the same lattice matrix
M, except for the presence of an arbitrary number of zero
columns on their right.

3.2 Z-Polyhedron and LBL

In the following definitions, M and C are integer matrices,
and m and c are integer vectors.

An integer polyhedron is the set of all points of Z¢
verifying a finite set of affine inequalities:

P={z€Zd|Cz+c20}.

A Z-polyhedron is the intersection of an integer lattice
and an integer polyhedron:

Z={z€Z% 3 2% z=Mz'+m, Cz+c>0}.

A simple LBL! is the affine integer image by a lattice
function of an integer polyhedron, called the coordinate
polyhedron:

£={Z=My+m Cy+c20,y€Zd}.

An LBL can be represented in normalized form as a pair:
a canonical affine function as defined in the previous subsec-
tion; and a rational coordinate polyhedron which does not
contain any implicit equality. The points y are the integer
points contained in this rational polyhedron. Notice that the
corresponding integer coordinate polyhedron might contain
equalities, but it is an NP-hard problem to find those implicit
integer equalities from an arbitrary rational polyhedron [3],
so we do not guarantee their absence. This implies however
that two different LBLs in normalized form may represent
the same set of integer points, and the only way to decide
for equality between such two sets is to explicitly verify
their mutual inclusion or to check the emptiness of their
difference.

1LBL is the commonly used acronym of “linearly bounded lattice”, which
it is not: an LBL is not a lattice bounded by linear inequalities, that is the
definition of a Z-polyhedron.

Z-Polyhedra and LBLs in PolyLib

3.3 Union of Z-polyhedra and LBLs

Based on the works of Le Verge [4] and Gautam [1], we
know that the family of integer polyhedra is strictly con-
tained in the family of Z-polyhedra which is itself strictly
contained in the family of LBLs. Gautam also showed that
any Z-polyhedron can be represented as an LBL, and that
any LBL can be represented as a finite union of Z-polyhedra.
Also, a union of LBLs or Z-polyhedra can not necessarily be
represented as a single LBL: two members of the union can
have two different full-dimensional lattices whose union is
not a lattice. So we have:

integer polyhedra c Z-polyhedra c LBLs
C (union of Z-polyhedra) = (union of LBLs)

In the following, we call a Z-domain a finite union of
Z-polyhedra. We call a single LBL an LBL having one sin-
gle lattice, but possibly associated to multiple polyhedra (a
polyhedral domain). To simplify the reading, we call LBL a
union of single LBLs.

In our implementation, the same internal representation is
used for Z-domains and LBLs, as a list of pairs: (lattice matrix,
rational polyhedral domain). The only difference between a
Z-domain and an LBL is that there are no zero columns in
the lattice matrices of a Z-domain. In the normalized form
of an LBL (a union of single LBLs), each lattice matrix is
canonical and it appears at most once in this list. Notice that,
as for simple LBLs, this normalized form of an LBL does not
guarantee uniqueness (1) for the same reason as above since
the union is composed of simple LBLs, and moreover (2) since
a given integer set can be represented using several different
lattice decompositions of different dimensions. It is a hard
problem to unify arbitrary lattice unions in a canonical form,
so we decided to leave the complexity of the comparison
and difference algorithms in those functions when called
explicitly, but still do a fast check for obvious inclusion first.

4 Normalized Representation
4.1 Single LBL Normalized Form

The algorithm to transform an arbitrary single-lattice LBL
into its normalized form has three main steps: lattice function
normalization, elimination of the equalities in the domain,
and elimination of the non-necessary zero columns of the
lattice matrix. In the following, we call L the homogeneous
lattice matrix, as denoted by M in section 3.1: the constant
dimension is included as the first column of the matrix, and

the extra first row represents the homogeneous coordinate.

We call D the homogeneous polyhedral domain, and x and z
also represent vectors in homogeneous dimension.

IMPACT ’26, 2026, Krakow, Poland

Example 1. The following example will be used along this
subsection to illustrate each step of the normalization algo-
rithm. Let:

i i
1 0)|j||i=2j,0<j<5]|j|eZ’

k k

In homogeneous dimensions the lattice matrix is:
1 0 0 0
L= (0 11 0)
Step 1. Canonicalize the lattice matrix. We first com-

pute the left Hermite normal form of matrix L and its associ-
ated unimodular matrix U as:

H=LU

Ly=1(1

The canonical homogeneous lattice function is simply H. But
in order to spread the same LBL points the domain has to be
transformed. Since the original LBL is the set of points:

z=Lx,xe€eD
we can rewrite:
z=Hx'=LUx', withx’ =U 'x,xeD
So, for matrix H to be used as lattice matrix, the domain has
to be transformed by homogeneous matrix U~ to contain
the points x’ = U™! x. Since matrix U is unimodular, this
transformation is always valid: it maps each integer point

of the original coordinate domain to an integer point of the
domain transformed by the preimage by U.

Example 1 (continued). The HNF of L is computed as:

10 0 0
100 0\ |01 -1 0
L_HU_(OIOO)OO 1 0
00 0 1

So H represents the new lattice matrix, and the domain is
transformed by the preimage function by U. The resulting LBL,
where the lattice matrix is in HNF, is:
i i
Li=3(1 0 0)|j||i=3j,0<j<5]j|eZ’
k k

Step 2. Eliminate equalities. The domain D is first sim-
plified by a call to the PolyLib core function DomainCons-
traintSimplify: any inequality has its constant rounded
to a multiple of the ged of its coefficients and an equality
without an integer solution just eliminates the polyhedron.
If a polyhedron becomes rational-empty, it is removed from
the domain.

Then, in order to eliminate equalities from a domain D, we
first scan the polyhedra of the union and separate them into
subdomains composed of polyhedra having identical sets of
equalities. They will be separated as different single LBLs
in the list of LBLs composing a union of LBLs. Let us call

IMPACT ’26, 2026, Krakow, Poland

each of these subdomain S, and the equalities that it verifies
homogeneous matrix E.

Then, we compute K = ker(E) using HNF: we compute
E U = H, and we know that: E ker(E) = 0, so, since the right
columns of H are composed of zeros, the corresponding right
columns of matrix U form a basis of the kernel of E.

The HNF of K, called J, is the integral kernel of the matrix
of equalities. As a consequence it can be used to reduce the
lattice L and the domain S to remove its equalities. The LBL:

z=Lx x€8S
is transformed into:
z=LJx', with]Jx'=x, x€S8§

So the new lattice generating the same set of integer points
is L J, and the new domain is the preimage of S by J, that is
without any equality.

Notice that matrix J is not necessarily unimodular nor
invertible, however this transformation is valid since it will
eliminate some dimensions and eliminate some rational points
that verify the equalities, but not the integer ones because J
is the integral kernel of E.

Example 1 (continued). The homogeneous equality matrix
is:

E=(0 1 -3 0)
Its integral homogeneous kernel is computed and we get:

0 0
3
1
0

S O O =
_ O O

Finally, the new homogeneous lattice matrix is:
L'=L]J

and we compute the preimage of the coordinate polyhedron
by J. The resulting LBL is as follows, with the i dimension used
in the definition of L eliminated:

Lzz{w m(g 0£i£i6)621

Step 3. Eliminate zero columns. This step consists of a
loop on the zero columns of L, and remove the corresponding
dimension only if the sufficient condition described below
is verified. If some columns are eliminated by the loop, the
remaining columns are scanned again to ensure that no more
elimination is possible. Although this algorithm does not
guarantee that the final result is unique, since a different
elimination order could generate a different result, it reaches
a fixed point and proved to be efficient in experimental cases.

We eliminate a column of zeros of lattice L only when we
can ensure the sufficient condition that the dark shadow cov-
ers the exact shadow of the domain. As defined by Pugh [8],
the exact shadow is the (rational) projection of D along the
considered dimension. The dark shadow is the projection of

Vincent Loechner and Dhimiter Riza

D restricted to its inside, ensuring that at least one integer
point of the origin domain maps to the projection, so that it
is not a hole: this is done by adding the coefficient of the elim-
inated dimension minus one to the constant of each positive
constraint on the eliminated dimension. If the dark shadow
covers the exact shadow then there are no holes and this
dimension can be eliminated: we remove the corresponding
column in L and project the domain along this dimension.

Example 1 (continued). There is a remaining zero column
on the right of the lattice defining L,. We compute the exact
and the dark shadow of the coordinate polyhedron along this
dimension and get the two identical polyhedra:

E=D={i|0<i<5}

So this dimension can be integer-eliminated by simple projec-
tion along j, and we get the final normalized LBL, which is a
Z-polyhedron:

Lo=L1=L=L3={3i| 0<i<5i€Z}

4.2 LBL Union Normalized Form

An LBL is a list of single LBLs. Its normalized form is such
that:

1. each single LBL composing the list has been trans-
formed into its normalized form by the above method;

2. there are no empty LBLs in the list, unless the whole
list is a single empty LBL (in which case the domain
is empty, but the lattice matrix height determines the
dimension of the space that this empty LBL lies in);

3. each lattice matrix appears at most once in the list.
The algorithm to ensure this condition scans all pairs
of single LBLs of the list and if it finds two identical
lattice matrices, it merges the single LBLs together by
computing the union of their associated polyhedral
domains.

5 Operations
5.1 LBL Type

In our implementation in PolyLib the following structure
represents an LBL:

typedef struct 1bl {
Matrix =*Lat;
Polyhedron *P;
struct 1lbl *next;
} LBL;

with P a polyhedral domain (a union of polyhedra): it uses
the PolyLib representation of a rational polyhedral domain;
matrix Lat is a homogeneous PolyLib matrix, of the form:

M m
Lat—(0 1)

and next is used to link single LBLs in a union.

Z-Polyhedra and LBLs in PolyLib

The same LBL data structure is used to represent single
LBLs, LBL unions, Z-polyhedra and Z-domains. To distin-
guish when we are dealing with a single LBL or with a (union
of) LBLs we have explicitly named the functions manipulat-
ing them, e.g. sLBLImage() computes the image of a single
LBL, while LBLImage () computes the image of an LBL union.
The only functions that are exposed to the user of the library
are the functions manipulating LBL unions.

The empty LBL of dimension d is represented as a Lat
matrix having d + 1 rows, and a NULL domain.

5.2 Operations on Lattices

The basic functions to manipulate lattices are:

Bool isNormallLattice (Matrix *A);
Bool isEmptylLattice (Matrix xA);
int LatCountZeroCols (Matrixx A);
Bool LatticeIncluded (Matrix *A, Matrix *B);
Bool isEquallLattice (Matrix xA, Matrix *B);
Bool isSamelLatticeSpace(Matrix *A, Matrix *B);

Function LatticeIncluded(A, B) checks if A is included
in B. Function isEquallLattice(A, B) checks if A is exactly
equal to B, while isSameLatticeSpace(A, B) checks if A
and B are equal ignoring their zero columns. Those functions
implement pretty simple algorithms. Three more advanced
functions are explained in the following:

a) Affine Hermite normal form

void AffineHermite(Matrix *A, Matrix *xH Matrix =*xU)

Compute H and U such that: A = H U, H is the affine left
Hermite normal form of A and U is unimodular. This func-
tion first puts the last row and column of A as first row and
column, then calls the PolyLib left Hermite basic engine, and
finally puts the first row/column back to last in the matrices
A, Hand U. U can be left to NULL if not used be caller.

b) Intersection

’Matrix *LatticeIntersection(Matrix *A, Matrix *B)

a B b

A

Let us call 0o 1/° A and 0o 117 B.
The intersection function first builds matrix:

1 0.0[1 0.0

A B
T = a b
1 0.0]|0 0..0
a A 0 0.0

Then, the left Hermite normal form of this matrix is:

IMPACT ’26, 2026, Krakow, Poland

J
0 1
the two lattices. The reason this works is because HNF
produces zeros in the upper right block of the matrix, and
the corresponding columns in the bottom-right block are
made up of a linear combination of the vectors from A and B.
Since HNF(T) spreads the same points as the original matrix
T, the bottom right part is necessarily composed of the set
of vectors spreading the same points as A and as B: they are
both in A and in B, so they are the intersection of A and B.

If, after computation of the HNF, the coefficient above
vector j is not equal to one then the integer intersection is
empty.

where J = is by construction the intersection of

c¢) Difference

LatticeUnion *LatticeDifference(Matrix *A,Matrix *B)

In general, the difference between two lattices is a non-finite
union of lattices. It is finite if the dimensions of A and B
are equal: this function requires A and B to have the same
number of rows and non-zero columns. The algorithm that
we implemented first computes the intersection J = A N B,
and then takes J out of A: it builds the matrix spreading all
points of A that are not part of J.

We define the variants of a pivot row of A as the rows
that spread the points that are part of A but not part of J. To
generate all lattices that spread points that are part of A but
not part of J, we scan all pivots of A and all variants of the
row containing the pivot are added to the result, along with
the above rows coming from J, and the rows below coming
from A (constant adjusted as required, if the pivot changes).
In the end the result is the union of all those lattices, that
are by construction spreading all the points of A that are not
part of J.

For example, if A contains row (2 1) and J contains row
(24 3), we would want to generate all rows: (24 1), {243}, (24
5), (24 7), ... (24 21), (24 23) that spread all points that lie in A
but not in J. This enumeration of the variants (there are 12
here) can be optimized by computing the prime divisors of
the ratio of the pivots (24/2) and assembling some of those
generating rows together. For example, the set of rows (24
1), (24 5), (24 9), (24 13), (24 17), (24 21) can be represented as
the single row (4 1) generating the same set of points!

Taking this property into account, our general algorithm
for generating all variants of a pivot row is as follows. The
ratio (always integer) between the pivot of J and the corre-
sponding pivot p of A is decomposed into its prime divisors
d;. Then the row of J is transformed: the pivot is replaced
by each possible value p * d7, and the constant by all possi-
ble values with a step of p * d*~!, with x enumerating the
number of identical divisors in the decomposition. If such
a generated row hits the intersection row, it is not added to
the result. All the others, that spread points that do not hit
the intersection, are added to the result.

IMPACT ’26, 2026, Krakow, Poland

In our previous example, A contains row (2 1) and J row
(24 3), our algorithm will compute the prime divisors of
24/2 = 12, that are 2, 2 and 3, and then generate the following
rows. For 2+ 21: (4 1), (4-3); for 2 % 22: (83}, (8 7); for 2% 3: (6 1),
{63, (6 5). Then it takes out the struck out ones since they hit
(24 3). The decomposition in prime divisors guarantees that
the minimal number of variants of the row are generated
(there are only 4 in the end, instead of 12), but still that all
possible variants of the row of A are generated.

5.3 Operations on Single LBLs

The following operations on single LBLs have been imple-
mented in PolyLib. Recall that a single LBL contains one
single lattice function, but is associated to a domain that
may be a union of several polyhedra. Those functions are
the core of the library for manipulating unions of LBLs, pre-
sented in the next subsection.

a) Normalized form

void sLBLCanonical(LBL *A) ‘

Compute the normalized form of a single LBL (in place: mod-
ifies A), as described in section 4.1.

b) Image

LBL *sLBLImage(LBL *A, Matrix *M) ‘

Let A = {L, D}. The image function is pretty simple: the
set of points x” = Mx is generated by the LBL {M L, D}. We
compute the matrix product M L and normalize the resulting
single LBL.

c¢) Preimage

LBL *sLBLPreimage(LBL *A, Matrix #*M)

If matrix M is integer invertible, we just compute the single
LBL image by M™?, as explained in the previous function.
The preimage function is more complex in the other case,
when M is not invertible. We need to compute the set of
points x’ that verify Mx’ + m = Lx + I, with x € D, and
M m (L
L=
0 1 0
the following single LBL:

M= i) To do so, we explicitly build

/

Id 0.0 0 ’;
0 0.0 1

cst

Mx'+m=Lx+1,xeD

So domain D is extended to the dimension of x plus x” and
the equalities are added to the domain; the lattice is as given
in the above equation. Then this single LBL is normalized,
the equalities are eliminated, and we get the result.

d) Intersection

LBL *sLBLIntersection(LBL *A, LBL *B)

Vincent Loechner and Dhimiter Riza

If the input LBLs are Z-domains (their lattices contain no
zero columns), then the hulls of A and B are guaranteed
to contain no hole, and we can use the following simple
algorithm:

e compute J, the intersection of L4 and Lp (the lattices
of A and B).

e if J is empty: return the empty LBL;
else: return the LBL {J, D3}, where D is the preimage
by J of the intersection of the hulls of A and B:

D = J ' (LaD4 N LgDg)

In the other case, if A or B is an LBL possibly containing
holes, we need to build the resulting LBL explicitly similarly
to the previous function. We construct the following LBL,
extending the dimension of the domains to their sum and
adding the equalities, associated to the lattice selecting one
of them:

’
0.0 Ly Iy ZZ
0..0 0 1

cst

then this LBL is normalized, and we get the result.

Laz+ lA = LBZ’ + lB,
z€ Dy, 2 € Dg

e) Compute holes

’Polyhedron *sLBLCompute_holes(LBL *A)

This function computes the union of polyhedra containing
the holes of the single LBL A. It is required by the next two
functions (sLBLComplement and sLBL2ZDomain) in case they
handle LBLs with holes; when A is a Z-domain, it immediately
returns an empty domain.

The algorithm consists of a scan of possible holes in the
projection of the coordinate polyhedron D, and an explicit
search for all integer feasible solution, as follows:

e compute the domain difference R = (exact shadow) \
(dark shadow) of D,
e compute Q = expand R to the dimension of D and in-
tersect it with D,
e scan R (or the outer dimensions of Q) and for each
vector r of R:
— scan the inner dimensions of Q, and as soon as an
integer solution is found exit this scan, after adding
the integer vector r to a domain called not_a_hole.

Finally, return Universe(dim(R)) - not_a_hole.

f) Complement

LBL *sLBLComplement(LBL *A)

In general, the complement of a single LBL is a union of
LBLs. Let A = {L, D}. This function builds the union of: the
points that are not part of the hull of A + the points that do
not lie in lattice L + the holes of A, as:

1. the single LBL:
{zeZ%z ¢ DomainComplement (hull(A))}

Z-Polyhedra and LBLs in PolyLib

The hull of A is the polyhedral domain: image by func-
tion L of domain D.
2. the union of LBLs:

{Mz|z € Z%} for each M in LatticeDifference(Z% L)

Since the difference between two lattices is a union of
lattices, this builds a union of LBLs. The coordinate
polyhedron could have been chosen as the preimage of
the hull of A, but it is unnecessarily more complicated
to do so.

3. the LBL:

{Lpz|z € sLBLCompute_holes(A)}
where Lg is L without its zero columns.

g) LBL to Z-domain

LBL *sLBL2ZDomain(LBL *A) ‘

This function just builds the LBL:
{Lpz|z € DomainDifference(E, sLBLCompute_holes(A))}

where E is the exact shadow of A and L is L without its zero
columns.

5.4 Operations on LBL Unions

The basic operations to allocate and manipulate an LBL are:

LBL *LBLAlloc (Matrix *Lat, Polyhedron xDomain);

void LBLFree (LBL *A);
void LBLPrint (FILE *fp, char *format, LBL *A);
LBL *LBLCopy (LBL *A);

LBL *EmptyLBL (int dimension);
LBL *UniverselLBL (int dimension);
Bool isEmptyLBL (LBL *A);

The following functions perform advanced operations on
LBLs:

a) Normalized form

void LBLCanonical (LBL *A)

Compute the normalized form of an LBL, in place, as de-
scribed in section 4.2. All the functions given below make a
call to this function after their operation.

b) Union
’LBL «LBLUnion(A, B)

Link together a copy of A and of B.

c¢) Image

’LBL *LBLImage(A, M) ‘

Build the union of the images by matrix M of each single
LBL of A.

IMPACT ’26, 2026, Krakow, Poland

d) Preimage

LBL *LBLPreimage(A, M)

Build the union of the preimages by matrix M of each single
LBL of A.

e) Intersection

LBL *LBLIntersection(A, B)

Build the union of all intersections between pairs of the
single LBLs of the list A and of the list B.

f) Complement

’ LBL *LBLComplement(A)

Build the intersection of the complements of each single LBL
composing A.

g) Difference

’LBL «LBLDifference(A, B)

First compute the intersection I = A N B. If I is empty, the
result is A. If I is equal to A then B covers A and the result is
empty.

If those simple tests fails, the general case computes the
difference between A and all single LBLs composing I, by
successively intersecting A with the complement of each
single LBL composing I.

h) Simplification

void LBLSimplifyEmpty(A)

Scan all domains stored in A and remove the polyhedra that
have no integer solution, in place.

This function first checks if a polyhedron has a ray, a line,
or an integer vertex. If found, it has an integer solution (since
the constraints have been simplified, the presence of a ray
or line ensures that an integer solution exists).

If not found, a systematic search scans the integer points
of the polyhedron in lexicographic order and early exits if
a solution is found. In case an integer solution is found, a
constraint is added to the outermost dimension of the poly-
hedron such that a subsequent call, or the removal of holes
on the same polyhedron, will hit this integer solution when
scanning its first dimension; if an integer vertex delimits
the polyhedron after adding this constraint, the scan will be
completely avoided by a subsequent call.

i) Inclusion test

’Bool LBLIncluded(A, B)

Check if A is included in B, if:
LBLSimplifyEmpty(LBLDifference(A, B)) is empty.

IMPACT ’26, 2026, Krakow, Poland

j) Conversion to Z-domain

LBL *LBL2ZDomain(LBL =*A)

Convert LBL A into a Z-domain, by building the union of
Z-domains composing each single LBL of A with function
sLBL2ZDomain, and normalizing the result.

6 Conclusion

We extended the works carried out over the years by Pugh,
Le Verge, Quinton, Rajopadhye, Gautam, and Iooss, to im-
plement robust and sound operations on arbitrary unions of
LBLs in PolyLib. All those functions have been tested on a
wide range of verified examples, using valgrind and a mem-
ory sanitizer to ensure consistent memory management.

Our implementation is both general and efficient. We took
care to handle difficult problems internally while using the
best possible version of each algorithm to uniformly manip-
ulate all those objects: Z-polyhedra, Z-domains, single LBLs
or their union. The implementation is available on the git
repository of PolyLib [5].

Problems such as computing the cardinality, generating
scanning loops, or finding the lexicographic minimum or
maximum of a union of LBLs are not integrated in the library
core functions. We are currently working on providing addi-
tional functions to the users to help them addressing these
problems as efficiently as possible.

Acknowledgments

We are grateful to Patrice Quinton for insightful discussions
and for being a key source of motivation in initiating this
work.

Vincent Loechner and Dhimiter Riza

We are grateful to Sven Verdoolaege for carefully reread-
ing an earlier version of this paper and providing valuable
comments that helped improve it.

References

[1] Gautam Gupta. Some advances in the polyhedral model. PhD thesis,
Colorado State University, 2010.

[2] Gautam Gupta and Sanjay Rajopadhye. The Z-polyhedral model. In
Proceedings of the 12th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’07, page 237-248, New York,
NY, USA, 2007. Association for Computing Machinery.

[3] Guillaume Iooss and Sanjay Rajopadhye. A library to manipulate
Z-polyhedra in image representation. Second International Workshop
on Polyhedral Compilation Techniques (IMPACT), 2012.

[4] Hervé Le Verge. Recurrences on lattice polyhedra and their applica-
tions. Technical report, IRISA, 1995.

[5] Vincent Loechner. Polylib git: https://github.com/vincentloechner/
polylib/.

[6] Vincent Loechner. PolyLib: A library for manipulating parameterized
polyhedra. Technical report, Université de Strasbourg, 1999.

[7] Sunder Phani Kumar Nookala and Tanguy Risset. A library for Z-

polyhedral operations. Technical Report. Rapport de Recherche Irisa,

No1330, IRISA, 2000.

William Pugh. The omega test: A fast and practical integer program-

ming algorithm for dependence analysis. In Supercomputing ’91:Pro-

ceedings of the 1991 ACM/IEEE Conference on Supercomputing, pages

4-13, 1991.

Patrice Quinton, Sanjay Rajopadhye, and Tanguy Risset. On manipulat-

ing Z-polyhedra using a canonical representation. Parallel Processing

Letters, 07(02):181-194, 1997.

[10] Doran K. Wilde. A library for doing polyhedral operations. Parallel

Algorithms and Applications, 15(3-4):137-166, 2000.

8

—

[9

—

https://github.com/vincentloechner/polylib/
https://github.com/vincentloechner/polylib/

	Abstract
	1 Introduction
	2 Related work
	3 Mathematical Background
	3.1 Integer Affine Function and Lattice
	3.2 Z-Polyhedron and LBL
	3.3 Union of Z-polyhedra and LBLs

	4 Normalized Representation
	4.1 Single LBL Normalized Form
	4.2 LBL Union Normalized Form

	5 Operations
	5.1 LBL Type
	5.2 Operations on Lattices
	5.3 Operations on Single LBLs
	5.4 Operations on LBL Unions

	6 Conclusion
	References

