
Towards Optimising Programs with
Sketch-Guided Polyhedral Compilation

Valeran Maytié
University of Strasbourg

France
maytie@unistra.fr

Reuben Carolan
University of Edinburgh

Edinburgh, United Kingdom

Christophe Alias
Inria, CNRS, ENS de Lyon, UCBL

Lyon, France

Cedric Bastoul
University of Strasbourg

France

Thomas Kœhler
ICube Lab - CNRS

University of Strasbourg - France
thomas.koehler@cnrs.fr

In : 𝐴[𝑖] : {0 ≤ 𝑖 < 𝑁 }

𝐵 [𝑖] : {0 ≤ 𝑖 < 𝑁 − 2} := 𝐴[𝑖] +𝐴[𝑖 + 1] +𝐴[𝑖 + 2]
3

Out : 𝐶 [𝑖] : {0 ≤ 𝑖 < 𝑁 − 4} := 𝐵 [𝑖] + 𝐵 [𝑖 + 1] + 𝐵 [𝑖 + 2]
3

Figure 1. Blur 1d specification

1 for i { 2

4 for j {
5 B[!i + j]; 5

} 4

3 C[!i]; 3

2

} 1

Figure 2. Blur 1d sketch

for i in {0 ≤ 𝑖 < 𝑁 − 4} {
for j in {0 ≤ 𝑗 ≤ 2}

B[i + j] = (A[i + j] +
...) / 3;

C[i] = (B[i] + ...) / 3;
}

Figure 3. Blur 1d result

Abstract
When programmers use semi-automatic compilers, they typ-
ically write optimisation scripts, to guide the compiler to-
wards key optimisations. Instead of writing scripts, it may
be preferable to write sketches that focus on the desired
structure of the optimised code, without worrying about
individual transformations.
In this article, we present a new semi-automatic, sketch-

guided compilation approach. We introduce a sketch lan-
guage that enables expressing the result of imperative loop
transformations and a new polyhedral algorithm capable of
generating code constrained by both a sketch and a compu-
tation specification.

1 Introduction
Contemporary advances in image processing, physical simu-
lation, and artificial intelligence demand enormous compu-
tational power [2]. Meeting these performance requirements
has driven the development of highly optimised programs.
Compilers such as GCC, Clang, and PluTo implement a

wide range of optimisations, yet their effectiveness remains
limited. In practice, these optimisations often rely on fragile
heuristics, which can prevent the discovery and application
of transformations that would yield substantial performance
improvements [8].
Early attempts to address this limitation without resort-

ing to fully manual optimisation produced semi-automatic
approaches. In these systems, users typically guide the com-
piler through scripting languages that explicitly specify the
transformations to apply [1, 6]. However, these scripts must

enumerate the transformations directly, making them diffi-
cult to write, and reason about [7].
An alternative approach to writing scripts is to write

sketches. Sketches enable the programmer to outline the
overall structure of the desired program while leaving cer-
tain details unspecified, to be completed automatically. In
the context of program synthesis for stencils, sketching was
introduced by [4]. However, to generate imperative code
for relatively small stencil kernels, this approach takes min-
utes [7]. More recently, sketches have also been explored
in the context of functional languages, in combination with
automatic term rewriting techniques [3].

In this article, we present a new approach to semi-automatic
compilation that combines sketch-guided optimisation with
polyhedral methods. Using polyhedral methods allows rep-
resenting iteration domains and efficiently perform depen-
dency computations, taking advantage of existing polyhedral
libraries such as PolyLib or isl .

This work consists of preliminarywork towards twomajor
contributions:

1. A new sketching language that enables expressing
the result of imperative loop transformations.

2. The first algorithm completing sketches using poly-
hedral methods. It takes as input a Systems of Affine
Recurrence Equations (SARE) specification of the re-
quested computation and a sketch that constrains the
shape of the desired output program. It generates a
program that respects the computation specification
and the desired sketch.

https://orcid.org/0009-0001-1225-0838
https://orcid.org/0009-0000-1981-4643
https://orcid.org/0000-0001-8461-8075

Valeran Maytié, Reuben Carolan, Christophe Alias, Cedric Bastoul, and Thomas Kœhler

Iteration domain Validation Domain: 𝑑𝑣 Needed: 𝑑𝑛
1 = 2 = 3 (), () → {} ⊢ 𝐶 [𝑘] : 0 ≤ 𝑘 < 𝑁 − 4

3 (𝑖), () → {0 ≤ 𝑖 < 𝑁 − 4} ” 𝑖 ∈ {0 ≤ 𝑖 < 𝑁 − 4} ⊢ 𝐵 [𝑘] : 𝑖 ≤ 𝑘 ≤ 𝑖 + 2
4 = 5 ” ”

5 (𝑖, 𝑗), () → {0 ≤ 𝑖 < 𝑁 − 4 ∧ 0 ≤ 𝑗 ≤ 2} ” ∅
4 (𝑖), () → {0 ≤ 𝑖 < 𝑁 − 4} ” ”
2 (𝑖), () → {0 ≤ 𝑖 < 𝑁 − 4} ” ”
1 (), () → {} ” ”

Table 1. blur 1d, sketch completion

2 Example: Blur 1d
In this section, we detail an example that generates code
for the blurring of a one-dimensional array on two stages.
This example has the particularity of showing that our algo-
rithm is capable of generating code that performs redundant
computations.

To specify the desired computations, we chose to represent
them in a functional form, known in the polyhedral commu-
nity as Systems of Affine Recurrence Equations (SARE) [9].
We chose this representation because it provides a simpler
abstraction to manipulate than raw C code and because we
care about values more than instructions. In Figure 1, we
define the blurring computation for a one-dimensional array
𝐴 of size 𝑁 , that consists of computing the average of three
surrounding cells. The blur is performed on two stages, first
blurring the array 𝐴 in the array 𝐵 of size 𝑁 − 2 and then
reblurring the array 𝐵 in the array 𝐶 of size 𝑁 − 4.
Our objective is to generate code that computes 𝐵 [𝑖],

𝐵 [𝑖 + 1], and 𝐵 [𝑖 + 2] within the same iteration of 𝑖 . This
approach, however, leads to recomputing overlapping por-
tions of 𝐵 multiple times. To the best of our knowledge, such
redundant computations are challenging to implement using
conventional automatic polyhedral compilers.
The corresponding code generation sketch is shown in

Figure 2, where 𝐵 is computed inside a for loop over 𝑗 . The
purpose of this loop is to allow computing several values of 𝐵.
Exclamation marks are used to force the indices to be exactly
those specified by the user. Without them, the algorithmmay
introduce existential variables that permit implicit shifts.
Our sketch completion algorithm performs a recursive

traversal from the bottom of the sketch to the top in order to
propagate all the computations that are needed. In Figure 2,
we annotate the sketch with numbers that indicate the order
in which the algorithm traverses it; the circles represent
the input to each constructor, and the square represents the
return value. We have detailed the states of the algorithm of
our current examples in the Table 1.

For each constructor, the algorithm returns structured im-
perative code that corresponds to the code described by the
sketch and the specification, as well as an iteration domain
that represents the iteration domain of the free variables of

the returned code. This means that the free variables of the re-
turned code must take all the values in this iteration domain
in order to perform the required computations. We write
this domain in the following form: (𝑣0, . . . , 𝑣𝑖), (𝑐0, . . . , 𝑐 𝑗) →
{𝐶}, where 𝐶 is a set of linear constraints. Semantically, this
corresponds to the set: {∃𝑐0, . . . , 𝑐𝑛, ∀𝑣0, . . . , 𝑣𝑚 . 𝐶}

The required computations are recorded in the needed do-
main. This set associates each array identifier from the spec-
ification with a computation domain that must be executed
to respect the dependency order between arrays. Unlike the
other two domains, the needed domain includes a context,
which allows local computations to be expressed relative to
the surrounding loop structure. We denote this domain as
Γ ⊢ 𝐵 [𝑘] : {𝐶}, where Γ is the needed context, 𝐵 is the array
being computed, 𝑘 is the index variable, and 𝐶 is the set of
associated constraints.
The algorithm also uses a validation domain that allows

constraints to be accumulated on the existential variables
that can be instantiated. In this example, this domain is not
used. This domain has the same representation as the itera-
tion domain.
At the beginning of the algorithm, we start by recording

the arrays requested in the needed domain. In this example,
our objective is to compute array 𝐶 , so, first we add the
necessary domain to the set of calculations we need :

⊢ 𝐶 [𝑘] : 0 ≤ 𝑘 < 𝑁 − 4.

In step 3 , we compute𝐶 [𝑖] for 𝑖 ranging from 0 to 𝑁 − 4
excluded. For each iteration of 𝑖 , the computation requires
the values 𝐵 [𝑘] with 𝑘 between 𝑖 and 𝑖 + 2. This yields the
needed domain:

𝑖 ∈ {0 ≤ 𝑖 < 𝑁 − 4} ⊢ 𝐵 [𝑘] : 𝑖 ≤ 𝑘 ≤ 𝑖 + 2.

In step 5 , we want to generate a function 𝑓 that allows
us to calculate the iteration domain of 𝐵 [𝑖 + 𝑗], so that the
code is correct. To do this, we just need to replace 𝑘 with 𝑖+ 𝑗

without changing the context, so we generate the function:

𝑓 (𝑖, 𝑗) = (𝑖, 𝑖 + 𝑗).

By computing its preimage, we obtain the iteration domain
at line 5 of the of the array in Figure 1, so we do indeed
have 𝑖 + 𝑗 between 𝑖 and 𝑖 + 2.

Towards Optimising Programs with
Sketch-Guided Polyhedral Compilation

fn comple te (s , spec) → CPoly : : Stmt {
let 𝑑𝑣 = (), () → {} ;
let 𝑑𝑛 = spec . ou t_ to_needed () ;

let s t , _ = comp l e t e _ r e c (s , 𝑑𝑣 , 𝑑𝑛 , spec) ;
Seq (EVar (𝑑𝑣 . evar , 𝑑𝑣 . dom) , s t)

}

fn comp l e t e_ r e c (s , 𝑑𝑣 , 𝑑𝑛 , spec) → (Stmt , 𝐷𝑖) {
match s {

Arr (id , l i) ⇒ c _ a r r (id , l i , 𝑑𝑏 , 𝑑𝑛 , spec) ,
Seq (s1 , s2) ⇒ c_seq (s1 , s2 , 𝑑𝑏 , 𝑑𝑛 , spec) ,
For (fv , s f) ⇒ c _ f o r (fv , s f , 𝑑𝑏 , 𝑑𝑛 , spec) ,

}
}

Figure 4. Sketch completion algorithm

At the end of step 2 , we want to generate correct code
for the sequence. To do this, we union the iteration domains
returned by steps 3 and 4 . Since the domains are equal,
there is nothing more to do. In other cases, if conditions may
need to be generated.
At the end of the algorithm execution, we find the code

given in the Figure 3.

3 Algorithm
The entry point of the algorithm is defined in Figure 4. It is
the function complete, which takes a sketch s and a specifi-
cation spec as input parameters—these are the two inputs of
the problem described in the previous section. The function
initialises two variables: validation domain𝑑𝑣 and needed do-
main 𝑑𝑛 , which represent the state of the algorithm. Once ini-
tialised, we call the sketch traversal function complete_rec,
Which takes the two states as parameters and returns a pro-
gram st, associated with an iteration domain over which all
free variables of st, must iterate.

Sequence generation The code generation for sequences
s1; s2 is in the function c_seq(s1, s2, ...). The main
objective is to propagate the needed computations from bot-
tom to top. To achieve this, we begin by generating the code
for s2, which will update both the needed domain 𝑑𝑛 and
validation domain 𝑑𝑣 . We can now complete s1 using the
updated set of needed domain. At the end of these two re-
cursive calls, we obtain st1 and st2, which are the codes
corresponding to s1 and s2, along with the domains d1 and
d2, representing the iteration domains of s1 and s2. If the
two domains do not match, we add if statements to be able
to union the two iteration domains.

For loop generation To complete a sketch that generates
a for loop: for fv { sf }, we use the function: c_for(fv,
sf, ...). We start by generating the code for the body of
the loop by adding 𝑓 𝑣 to the domains used by the algorithm.

Then, we simply retrieve the iteration domain from travers-
ing the body to obtain the constraints on the loop index.
At the end of the function, we return the for loop with the
iteration domain that contains only of the constraints on 𝑓 𝑣 .
The iteration domain returned is the one returned by the
body of the loop, removing the dimension corresponding to
the variable 𝑓 𝑣 .

Array computations generation The code for generat-
ing the array computations A[f0]...[fn] is implemented
in the function c_arr(A, li, ...). The objective is to gen-
erate the iteration domain, which allows us to specify the
domain of variables over which we must iterate in order to
compute all the indices of the array we need. To do this, we
retrieve the domain from the needed domain and construct
a function using the indices described in the sketch. Then,
we generate the imperative code by replacing the indices in
the specification with those given in the sketch. The algo-
rithm will also generate existential variables such as, 𝐴[𝑖]
becoming 𝐴[𝑖 + 𝑠] for some 𝑠 if the indices are not forced
(with an exclamation mark).

Once the sketch has been completed and the needed do-
main is empty, the existential variables generated by the
sketch are removed using the EVar constructor, which al-
lows constants constrained by the validation domain to be
declared. As these variables are constrained by a domain,
they can therefore have several values, so we can use heuris-
tics to choose the best values to assign to them. Conversely,
if the domain is empty, then the sketch is not valid, as it does
not comply with the constraints of the dependencies.

4 Conclusion
This paper lays the foundations towards optimizing pro-
grams with sketch-guided polyhedral compilation. We intro-
duce a new sketch language for imperative programs and an
algorithm that leverages polyhedral tools to generate code
consistent with both the sketch and the computation specifi-
cation. Tomake this new technique usable, our next plan is to
generate executable C code, and to measure the performance
of the generated code on the Polybench benchmark suite
[5]. We also plan to develop a frontend to improve usability,
enabling both specifications and sketches to be written in a
Python-based DSL.

Acknowledgments
This work benefited from government funding managed by
the National Research Agency under France 2030 via the
ENACT AI Cluster (ANR-23-IACL-0004).

References
[1] Lénaıc Bagnères, Oleksandr Zinenko, Stéphane Huot, and Cédric Bas-

toul. 2016. Opening polyhedral compiler’s black box. In Proceedings of
the 2016 International Symposium on Code Generation and Optimiza-
tion, CGO 2016, Barcelona, Spain, March 12-18, 2016. Björn Franke,

Valeran Maytié, Reuben Carolan, Christophe Alias, Cedric Bastoul, and Thomas Kœhler

Youfeng Wu, and Fabrice Rastello, (Eds.) ACM, 128–138. doi:10.1145
/2854038.2854048.

[2] Paul Barham and Michael Isard. 2019. Machine learning systems are
stuck in a rut. In Proceedings of theWorkshop on Hot Topics in Operating
Systems, HotOS 2019, Bertinoro, Italy, May 13-15, 2019. ACM, 177–183.
doi:10.1145/3317550.3321441.

[3] Thomas Kœhler, Phil Trinder, and Michel Steuwer. 2021. Sketch-
guided equality saturation: scaling equality saturation to complex
optimizations in languages with bindings. (2021). arXiv: 2111.13040
[cs.PL].

[4] A Solar Lezama. 2008. Program synthesis by sketching. Ph.D. Disserta-
tion. PhD thesis, EECS Department, University of California, Berkeley.

[5] Louis-Noël Pouchet and Tomofumi Yuki. 2022. PolyBench/C version
4.3.1. https://sourceforge.net/projects/polybench/.

[6] Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy,
Saman P. Amarasinghe, and Frédo Durand. 2012. Decoupling algo-
rithms from schedules for easy optimization of image processing
pipelines. ACM Trans. Graph., 31, 4, 32:1–32:12. doi:10.1145/2185520.2
185528.

[7] Armando Solar-Lezama, Gilad Arnold, Liviu Tancau, Rastislav Bod’ık,
Vijay A. Saraswat, and Sanjit A. Seshia. 2007. Sketching stencils. In
Proceedings of the ACM SIGPLAN 2007 Conference on Programming
Language Design and Implementation, San Diego, California, USA, June
10-13, 2007. Jeanne Ferrante and Kathryn S. McKinley, (Eds.) ACM,
167–178. doi:10.1145/1250734.1250754.

[8] Arun Thangamani, Vincent Loechner, and Stéphane Genaud. 2024. A
survey of general-purpose polyhedral compilers. ACM Trans. Archit.
Code Optim., (June 2024). Just Accepted. doi:10.1145/3674735.

[9] Tomofumi Yuki, Vamshi Basupalli, Gautam Gupta, Guillaume Iooss,
D Kim, Tanveer Pathan, Pradeep Srinivasa, Yun Zou, and Sanjay
Rajopadhye. 2012. Alphaz: a system for analysis, transformation, and
code generation in the polyhedral equational model. Colorado State
University, Tech. Rep.

https://doi.org/10.1145/2854038.2854048
https://doi.org/10.1145/2854038.2854048
https://doi.org/10.1145/3317550.3321441
https://arxiv.org/abs/2111.13040
https://arxiv.org/abs/2111.13040
https://sourceforge.net/projects/polybench/
https://doi.org/10.1145/2185520.2185528
https://doi.org/10.1145/2185520.2185528
https://doi.org/10.1145/1250734.1250754
https://doi.org/10.1145/3674735

	Abstract
	1 Introduction
	2 Example: Blur 1d
	3 Algorithm
	4 Conclusion
	Acknowledgments

