New Insights on Scalar Promotion with the Polyhedral
Model

Alec Sadler
Inria, CNRS, ENS de Lyon, UCBL
Lyon, France
alec.sadler@inria.fr

Hugo Thievenaz
CEA List
Saclay, France
hugo.thievenaz@cea.fr

Abstract

Memory accesses are a well known bottleneck whose impact
might be mitigated by using properly the memory hierarchy
until registers. In this paper, we address scalar promotion, a
technique to turn temporary arrays into a collection of scalar
variables to be allocated to registers. We revisit array scalar-
ization in the light of the recent advances of the polyhedral
model. We propose a general algorithm for array scalariza-
tion and we show a scalarization of stencil computations
thanks to a preliminary preprocessing. Our scalarization
algorithm operates on the polyhedral intermediate represen-
tation and could be plugged in a polyhedral compiler among
other passes. In particular, our scalarization algorithm is
parametrized by the program schedule, possibly computed
by a previous compilation pass. We present a preliminary
experimental validation with promising results.
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1 Introduction

Minimizing the memory transfers by using properly the
memory hierarchy until registers is of prime importance
to improve the performances of a program. Many compiler
optimizations were designed to improve data locality by reor-
ganizing the computation and the data layout. In particular,
scalarpromotion, or array scalarization, [7, 9, 14, 19] consists
in transforming an array into a group of scalar variables, to
be allocated to registers. In addition to improve the mem-
ory traffic, hence the overall performances, it generally en-
able more compiler optimizations, as dependences resolved
through registers might be finely analyzed. In particular,
register tiling [9, 14] splits a computation into blocks where
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register pressure makes possible scalar promotion. Most of
these approaches are monolithic, they are designed as end-to-
end optimizations without taking account of the scheduling
constraints induced by previous compilation passes. Gen-
eral purpose compilers enable such optimizations through
a series of symbolic analysis [2], but they have inherent
limitations when applied to variables with loop-carried de-
pendences.

We focus on the polyhedral model [10-13, 17, 18], a gen-
eral framework to design loop transformations and data
remapping for code optimization. Polyhedral analysis makes
possible to reason about programs transformations, and how
they affect schedule and dependences properties.

In this paper, we rephrase array scalarization as a generic
polyhedral compilation pass, parametrized by an input sched-
ule — the result of a previous polyhedral compilation pass.
We exploit array contraction [5, 15] to expose array-level
data reuse. Also, we propose a preliminary preprocessing
to enable the scalarization of stencil computations by exploit-
ing reuse between read points, as well as a postprocessing
to mitigate the complexity of the generated code. At the end,
we expose a minimum amount of scalar variables ready to
be assigned a register. Specifically, we make the following
contributions:

e We propose an algorithm for array scalarization based
on array contraction, ready to be plugged in a polyhedral
compiler. In particular, our algorithm is parametrized
by the program schedule which might be the result of
a previous polyhedral pass.

e Our transformation exposes directly the scalar variables
to be put in distinct registers. This way, the work of
the register allocator is reduced compared to the other
approaches for scalarization.

e We propose a preliminary preprocessing to enable scalar-
ization of stencil computations by exploiting reuse across
stencil reads. This preprocessing is not inherently bound
to stencil computations and could be applied to any
computation where the same data is read by different
instances of the same statement.
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e We propose a post-processing on the scalarized polyhe-
dral intermediate representation to mitigate the control
complexity on the final code.

e We present a preliminary experimental evaluation of
our approach. In particular, we analyze the effect of
our control improvement post-processing on the final
code performance.

The remainder of this paper is structured as follows. Sec-
tion 2 presents the required notions in polyhedral compila-
tion. Section 3 presents related work. Section 5 describes our
scalarization algorithm. Then, Section 6 presents our prepro-
cessing for scalarizing stencil computations and Section 7
presents our postprocessing for mitigating code complexity.
Section 8 presents our experimental validation. Finally, Sec-
tion 9 concludes this paper and draws research perpectives.

2 Preliminaries

This section outlines the concepts of polyhedral compilation
used in this paper. In particular, we define the polyhedral
intermediate representation of a program. Then, we outline
array contraction.

2.1 Polyhedral model

The polyhedral model [10-13, 17, 18] is a general framework
to design loop transformations, historically geared towards
source-level automatic parallelization [13] and data locality
improvement [6]. It abstracts loop iterations as a union of
convex polyhedra — hence the name — and data accesses as
affine functions. This way, precise - iteration-level — com-
piler algorithms may be designed (dependence analysis [10],
scheduling [12] or loop tiling [6] to quote a few) .

2.2 Polyhedral intermediate representation (IR)

In polyhedral compilers, the intermediate representation
(IR) usually consists of a program P summarized as a set of
statements S and their iteration domains Ds. In a polyhedral
statement, each of its iteration is uniquely represented by
the vector of enclosing loop counters i. The execution of a
program statement S at iteration i is denoted by (S, 7) and
is called an operation or an execution instance. Figure 1.(b)
provides the iteration domains Ds = {(y,x) | 0 < y <
A0S x<NLDr =Dy ={(yx) |2<y<NAO <
x < N} for the 2D blur filter presented later. The iteration
domains might be parametrized (here by N). Statements
are accompanied with a schedule 6 (typically the original
sequential order), an optional tiling ¢ and in our case an
optional array contraction function o.

2.3 Polyhedral transformations

To introduce our algorithm, we first need to list needed
loop transformations, and how they apply to a polyhedral
representation.
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Scheduling. A schedule 05 assigns each operation (S, 7)
with a timestamp 65 () € (24, <). Intuitively, O (i) is the
iteration of (S, 1) in the transformed program. A schedule
is correct if (S,7) — (T,]) = 0s(i) < 07()), where —
denotes the dependence relation between operations. The
lexicographic order ensures that the dependence is preserved.
In the polyhedral model, we focus on affine schedules 05(i) =
Ai+b. If f is an affine mapping f (i) = Ai + b, the linear part
of f, lin f, is such that (lin f) (i) = Al

Tiling. Tiling is areindexing transformation which groups
iteration into tiles to be executed atomically. There are many
variants of this transformation. Rectangular tiling reindexes
any iteration i € Ds to an iteration (ipjock ijocar) such that
i= %(?block: E)local): with %(Yblock’ ?local) = (diag 5) ?block +
Tocals 0 < frocal < S where § is a vector collecting the tile
size across each dimension of the iteration domain. ?block
is called the outer tile iterator and ij,04 is called the inner
tile iterator. The companion schedule associated to the tiling
Os (?bloclw Zoml) orders ipjocr first to to ensure the execution
tile by tile. Figure 1.(b) gives an example of rectangular
tiling with § = (4). To enforce the atomicity (avoid cross
dependences between two tiles), it is sometimes desirable
to precede the tiling by an injective affine mapping ¢s. The
coordinates of ¢s(i), for i € Ds are usually called tiling hy-
perplanes. In that case, the transformation 74! o ¢ for some
statements S is called an affine tiling. Note that rectangu-
lar tiling is a particular case of affine tiling where ¢s is the
identity mapping.

Array contraction. Arrays might be remapped with an
allocation functiona [i] — Aopt[0a M1, usually with a smaller
footprint. In the polyhedral model, we focus on mappings
6q: i Al mod E(ﬁ ), where A is an integral matrix and
§ is an affine function applied on program parameters N.
Several algorithms were designed to derive such allocations,

they are briefly discussed in the next section.

3 Related Work

This section outlines the related work on scalar promotion,
register tiling and array contraction, which all closely relate
to our paper. We also discuss memory reuse optimizations
for stencils, which relates to our preprocessing step.

Scalar promotion. Scalar promotion or register promotion
is the storage of a dependency (a value produced to be stored
for later) in registry instead of memory. As register access
is way faster than memory access, this effectively removes
the loading time, but register entries usually are of very lim-
ited quantity. Since the seminal work of Callahan, Carr and
Kennedy [7], many approaches were developed for scalar
promotion. Most of these are coupled with a loop tiling and
refered to as register tiling, as described in the next paragraph.



New Insights on Scalar Promotion with the Polyhedral Model

In LLVM, passes like Scalar Replacement of Aggregate, cou-
pled with symbolic expressions analysis from the SCALAREv-
OLUTION framework [2], break complex memory objects and
loop-invariant variables into individual scalars, which can
then be promoted as registers with the mem2reg transforma-
tion pass. While highly effective, these passes have inherent
limitations when applied to loop-carried dependences. Thus,
they conservatively restrict register promotion for variables
involved in such loop.

Register tiling. Register tiling uses the loop tiling trans-
formation to exploit data locality at the register level. Loop
unrolling and tiling made its debut in the domain of paral-
lelism, as a way to expose parallelization opportunities, by
assigning each tile to a computing unit in order to parallelize
their computation, assuming no dependency is broken. The
notion of tiling is a general method to circumvent the limited
number of computing resources, by cutting the iteration do-
main of the program into tiles that fit into the target memory
level (register, cache, memory...). Jiménez et al. [14] present
an approach to the problem of scalar promotion for non-
rectangular perfect loop nests by tiling the iteration space
appropriately. They detail a source-to-source transformation
of the program, the locality analysis, where they perform
a reuse analysis to search for the candidates for promotion
with the highest temporal reuse, and use their heuristic to
determine the tiling parameters. Then, Renganarayana et
al. [19] presented a technique to extract an unrollable ker-
nel from an imperfect loop nest, allowing the optimization
to work on more complex program inputs yet again. More
recently, Domagala et al. [9] presented a novel approach to
register tiling, by using innermost-loop scheduling to ex-
pose data reuse. The scheduling is done ad-hoc by unrolling
and rescheduling the innermost-loop under dependence con-
straints, and then tiling the iteration space resulting of the
statement order and innermost iteration index dimensions.
Therefore, the order of the statements within the loop is
considered as a dimension too, which brings a new perspec-
tive to the problem. However, their method is restricted to
perfect loops and focuses only on the deepest index space to
promote from.

Array contraction and memory reuse. Array contrac-
tion [1, 5, 15, 20] consists in finding a storage function that
maps elements of an array to their storage location, such that
the resulting storage requirement is minimized similarly to
register allocation. Array liveness is exploited to maximize
memory reuse, and thereby to reduce the overall footprint.
Memory reuse is also exploited to design efficient hardware
for stencil computations [8, 23], using FIFO lines to convey
the data to the different read points of the stencil. There
has been some work to automate the synthesis of such de-
signs [4], particularly in the context of polyhedral process
networks [21], a dataflow model of computation for hetero-
geneous multiprocessor platforms and hardware synthesis.
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1 for(y=0; y<2; y++)

2 for(x=0; x<N; x++) {

3 S: blurx[x,y] = in[x,y]

‘ + in[x+1,y] + in[x+2,y];
5 }

o for(y=2; y<N; y++)

7 for(x=0; x<N; x++) {

s T: blurx[x,y]l = in[x,y]

0 + in[x+1,y] + in[x+2,y]1;
0 U: outlx,y]l = blurx[x,y-2]1 +
11 blurx[x,y-11 + blurx[x,y];

(a) 2D Blur filter

1+ O O @x @x @

x @O
H

3O O @x @x @

(b) Iteration domains and dependences

Figure 1. Motivating example 1: 2D Blur filter

All these approaches are complementary to ours, we address
the unification of memory reuse and scalar promotion for
software optimization.

4 Motivating Examples

We illustrate our scalarization approach on two exam-
ples: the 2D blur filter kernel depicted in Figure 1 — used as
running example in Section 5 — and the 2D Jacobi stencil
depicted in Figure 2 — used as running example to describe
our data systolization preprocessing in Section 6.

Example 1: 2D Blur filter. The computation is divided
into two steps. First, an horizontal filter (statements S and T)
is applied to the input picture in and stores the result into the
array blurx. Then, a vertical filter (statement U) is applied to
blurx and stores the final result to the array out. The whole
might be seen as a producer/consumer through the tempo-
rary array blurx. So of the two arrays in and blurx, only
the latter might be contracted and then scalarized; provided
array contraction leads to a constant (non-parametrized by
N) size.
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for(t=0; t<T;
for(i=1; i<N-1; i++) {
for(j=1; j<N-1; j++) {
S: outl[i,jl = in[i-1,3] + in[i+1,3] +
in[i,j] + in[i,j-1] + in[i,j+11;

i++) {

13
for(i=1; i<N-1; i++) {
for(j=1; j<N-1; j++) {
T: infi,j] = outl[i,jl;
13

(a) 2D Jacobi kernel

(b) Data pipelining across S reads while executing
(S, t,1i, j) for a fixed ¢.

Figure 2. Motivating example 2: 2D Jacobi stencil

With the original schedule 65(y, x) = (0,y, x), 07 (y, x) =
(L,y,x,0), 0y(y,x) = (1,y,x,1), 3 iterations of x must be
completed before the execution of U. Indeed, the second fil-
ter applied by U would require three vertical cells of blurx
(as shown in Figure 1.b), in particular the three first, for each
x. Hence the allocation op,,x(x,y) = (x mod N, y mod 3),
with the non-constant (parametrized) footprint 3N. Hence
loop transformations are required to lower the liveness of
blurx to a constant level. This is done with the schedule
Os(y,x) = (0,x,y),0r(y,x) = (1,x,4,0),0u(y, x) = (1, x,y,1),
which leads to the allocation opyr(x, y) = (x mod 1,y mod
3) with a constant footprint 3 where scalarization might now
be applied. Sometimes, affine schedules are not sufficient,
and tiling may be required. At worst, arrays might be priva-
tized per tile and our algorithm would reproduce the results
of a register tiling.

Our algorithm will try to scalarize provided an input sched-
ule. How to compute a schedule leading to scalarization is
not the scope of this paper. In general, schedules obtained
by minimizing the dependence distance [6] are relevant can-
didates.
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Example 2: 2D Jacobi stencil. On this example, each out-
put pointout[1i, j] is computed from a fixed neighbourhood
of in[i, j]. At first glance, there is no possible scalarization,
since the arrays are either live-in or live-out. However, we ob-
serve that each datum circulates in a pipelined fashion between
each read of in during the execution. Indeed, with the sequen-
tial schedule 95(t, 1, j) = (¢,0,1, j) and 0s(t, i, j) = (¢, 1,1, j)
the data in[i+1,j] read at iteration (¢, i, j) will be read as
in[i, j+1] at iteration (t,i+ 1, j — 1), then as in[i, j] at it-
eration (¢,i+1, j) and so on until the last read as in[i-1, j]
at iteration (t,i + 2, j). This pipeline, illustrated on Figure
2.(b), is called data systolization.

In this paper, we show how to produce a scalarized pro-
gram emulating data systolization with register variables. Sec-
tion 6 will show how to preprocess the program so our poly-
hedral scalarisation algorithm presented in the next section
produces such a transformation.

5 Scalarization

This section presents our scalarization algorithm. This al-
gorithm may be composed with our stencil specific prepro-
cessing (Section 6) and our code complexity mitigation post-
processing (Section 7).

At a glance. First, we illustrate the basic principle of our
algorithm on Example 1. Provided the loop permutation
schedule y < x and the allocation oy, (x,y) = (x mod
1,y mod 3), each read blurx[x,y] may be rephrased

blurx_cLopirx(x,y)]

where the array blurx_c is the contracted version of blurx,
with a size 1 X 3. Applying an unrolling of 3 on the y loop
enclosing U, the loop body would have the statements:

outl[x,y]l = blurx_c[@,y—-2mod3] +
blurx_c[0,y—1mod3] +
blurx_c[@,ymod3];
blurx_c[x,y—1mod3] +
blurx_c[@,ymod3] +
blurx_c[@,y+1mod3];
blurx_c[x,ymod3] +
blurx_c[@,y+1mod3] +
blurx_c[@,y+2mod3];

outl[x,y+1]

out[x,y+2]

Now, since the y loop is unrolled with a factor 3, y mod 3 is
constant, so are y — 1 mod 3, y — 2 mod 3, y + 1 mod 3 and
y + 2 mod 3. Hence, all the reads to blurx might replaced by a
register. Two challenges must be addressed:

e Compute the unroll factors when several arrays are
contracted with different allocations o.

e We do not consider loops, but affine schedules. This
is somehow equivalent, as schedule dimensions are
virtually loop counters. However, it complicates the
whole procedure.
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Main algorithm. Algorithm 1 depicts the main algorithm.
We input the result of the previous polyhedral compilation
pass: a polyhedral IR of a program (P, §) with an array al-
location ¢ and an optional loop tiling ¢. Both scheduling
and tiling might be either imposed by a previous polyhedral
pass, or required to bound the liveness of some temporary
arrays to a constant size. This latter point will be discussed
further in Section 6. Then, we output the polyhedral IR of the
scalarized program (Pyy;, Ooy:), which might feed the next
polyhedral compilation pass until the final code generation.

Algorithm 1: SCALARIZATION

Data: Program (P, ), allocation ¢, optional tiling ¢
Result: Scalarized program (Poys, Gour)

1 begin

2 Skip arrays with parametrized modulo
3 if No array remains then

4 ‘ return (Pyy;, Opyy)

5 end

6 U «—— UnrorL_FacTors(P, 0, o)

7 (Pouts Bour) «— CoDE_GENERATION(P, 0, ¢, 0, U)

8 return (Pouts eout)
9 end

Arrays which still have a parametric size are skipped (step
2). When no array remains, our algorithm stops and returns
the original program (step 4). Then, we scalarize the arrays
with constant size. First, we compute the unrolling factors
for the loops formally described by 0 (step 6, Algorithm
2). These are the loops produced after the final polyhedral
code generation for P under the scheduling constraint 6.
Of course, we do not have syntactically these loops at this
point of the polyhedral compilation, and we have to reason
directly on 0. Then, we produce the polyhedral IR for the
final scalarized program (step 7). We apply the unrolling
with respect to 8 and we generate the program statements
with scalar variables to be allocated to registers.

The two next subsections present our algorithms UN-
ROLL_FACTORS and CODE_GENERATION.

5.1 Unrolling the Loops

The main challenge is to find out the minimum unroll fac-
tors to expose constant array indices (after contraction), so
they might be subsequently substituted by a scalar vari-
able. Consider Algorithm 2. We first rephrase array indices
to use the loop counters prescribed by 6 (time counters
t;). If 6,(¢) = AZmod 3, the index u(i) for the reference
aloa(u(i))] of statement S is rephrased Aouo 95_1 (f) mod 3,
since 05(i) = 7 (definition of s). The remainder focuses on
the affine part A o u o 651(7).
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Algorithm 2: UNRoLL_FACTORS

Data: Program (P, 6), allocation o
Result: U: time dimension (6) + unroll factor

1 begin

2 U(t;) «— 1, for each time dimension ;
3 foreach reference S : ..a[u(]...do

4 Write 0,(¢) = Ac mod §

/* Unroll time dimensions (6) */

5 Let(fl(?),...,ﬁ,(?))=Aou09§1(?)
6 foreach index dimension fi.(f) do

7 foreach variable t; in f;.(f) do

8 | UL) — lem(U(t),5)

9 end

10 end
11 end
12 return U
13 end

The following lemma proves that the obtained unroll fac-
tors expose constant array indices. We denote by 4 X 7
the element-wise multiplication of vectors: (uy,...,u,) X
(01,...,0n) = (Ug X01,...,up X0p).

Lemma5.1. LetU = (U(tr), ..., U(tp)) andS : ...a[u()]...
a reference to a contracted array in P. Then, with unroll fac-
tors U, the reference is constant (the same cell a[¢y] at each
iteration):

HEOGZP:W-C)EZ": O'aouOHS_l(l_c)x[_j):EO

Proof. We use the notations defined in Algorithm 2. The k-th
dimension of o, o u o 95’1(1_5 X (7) may be written: (ak(l_é X
(7) + fi) mod sg, which develops to: (ak(lz X (7) mod s +
P mod sx) mod si (since Z — Z/sZ is a ring morphism)
Now, each non-null U; in the expression ak(l}) is a multiple
of s (line 8), so is ak(l_c) X [7) Hence ak(lz X (7) mod s; = 0.
Therefore, the k-th dimension of o, o u 0 85 1 (1? X ﬁ) is the
constant ¢y, = fx mod s. O

This shows the correctness of our unroll factors. We point
out that our unroll factors are minimal, as we use an lem
(step 8).

Running example (cont’d). Recall the schedules 05 (y, x) =
(0,x,4,0),0r(y,x) = (1,x,4,0), 0y (y, x) = (1, x,y,1). Hence
95_1 = 0;1 = 0&1 = (t1, 1, t3,t4) > (13,1). Also, we have
Oplurx (%, y) = (x mod 1,y mod 3), hence A is the rank 2 iden-
tity matrix. The references to blurx, written as Aou o 0g 1(7)
are (step 5): blurx[x,y] v blurx[t, t3], blurx[x,y — 2] —
blurx|[ty, t3 — 2], blurx[x,y — 1] ¥ blurx[t,, t3 — 1]. Finally,
we obtain: U : t; > 1ty > 1,15 > 3,14 > 1. m]
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5.2 Code Generation

We generate the polyhedral representation of the scalarized
program with Algorithm 3. For each statement S, each loop
tjis unrolled by a factor U (¢;) = Uj (step 5). This is expressed
by an euclidian division: t; = 85 (7)]- = k; X Uj + m; with
0 < m; < Uj (euclidian division), k; being the counter of
the unrolled loop for ¢; and 7; being the unroll offset in that
loop. The tiling constraints are [6]: ieDsAT = os (@) /§
where / denotes the element-wise euclidian division and S
is the tile size along each hyperplane.

Algorithm 3: CoDE_GENERATION

Data: Program (P, 0), tiling ¢, allocation o, unroll

factors U
Result: Scalarized program (Poys, Oour)
1 begin
2 | Ue— (Ut),..., Uty))
3 foreach statement S do
4 foreach 7 € [0, U(t1)[X...x [0, U(t,)[ do
5 Dz — {(T.k1) | 0s() = kxU+7 A
tiling_constraints(Ds, ¢s, Y_:, ?)}
6 05T, K, 7) — (T, ki, 71, .., ks 71)
/* final scalarization */
7 Set a new statement S;,(i k, 1) from S(7)
by substituting each reference alu(?)] by
r‘egister_agaouog;l(ﬁ)
8 end
9 end
10 Write P,,; the collection domain:statement
Ds 7 Sz
11 Write 8,,; the collection of schedules 0; ;
12 return (Pyy;, Oour)
13 end

The following theorem proves the correctness of the sched-
ule computed at step 6.

Theorem 5.2. If 0 is correct, Then: O ; is a correct schedule
over Ds ., for any 7 enumerated in Algorithm 3.

Proof. Since 65 () = kxU+7 (element-wise euclidian di-
vision), the lexicographic order of (kq, 7, . . ., ky, 7,) is the
same as 05 (7). Hence the correctness of Os 7 : (i I_é, i) -
(Toky, 71, - ks 700). o

The following lemma proves correctness of the register
naming at step 7.

Lemma 5.3. For any (7_: E T) € Dy 7, the index function of a,
ogouo 95_1(?) depends only on 7 and is equal to

(co +1in (Ao u 0 05'(7))) mod § for some constant vector&, €
7", where t = 05(i) = kxU+7 (step 5).
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Proof. With the notations of the algorithm,
oaou09§1(kxl7+7_f)

becomes after affine decomposition:

(Aouo 951(Ex U)+lin(Aouo 651) (7?)) mod 5.

From then, we distribute the modulos to get:

(oa ouo 9§l(zx U) + lin (Aouo6gt) (7) mod§) mod 3.
which further simplifies (Lemma 5.1) to:

(o +1lin (Ao uo65") (7)) mod .

This final equation depends only on 7. O

Adding a constant vector to the left hand side of
(co +1in (Aouo6') (7)) mod § does not change its exclu-
sive dependence on 7, hence we may safely use A o u o
05" (7)) mod s = o, 0 u 0 05! (7) instead to name the register
(step 7).

Running example (cont’d). For each statement S, T, U,
we enumerate all the values of 7 € {0} x {0} x [[0,2] x {0}.
For instance, for S and the first combination 7 = (0,0, 0, 0),
we generate:

b z)s,(o,o,o,o) = {(k1, k2, ks, kg, Y, x) |
gs(y, x) = (O,X, Y, 0) = (k1.1+0, k2.1+0, k3.3+0, k4.1+
OAOLSx<NAOLy<?2}

L4 95,(0,0,0,0) (k1, k2, ks, k4, y, x)
= (kl, 0, kz, 0, kg, 0, k4, 0)

® S(0,000) : register_blurx ooy = in[x,y] +in[x+1,y] +
in[x +2,y];

The 11 other combinations for 7 are processed in the same
way. Given to a polyhedral code generator, this produces the
desired scalarized program. ]

6 Exposing Data Systolization

This section outlines a preprocessing to enable scalarization
of stencil kernels. After this preprocessing, our scalarization
algorithm will naturally emulate a data systolization pipeline
as depicted on Figure 2. We discuss the principle of our
preprocessing on two examples: a 1D convolution and the
2D jacobi stencil.

A simple 1D-convolution. For the sake of clarty, and
without loss of generality, we present our ideas on a simple
1D convolution:

for(i=1; i<N-1; i++) {
out[i] = in[i] + in[i+1]; //S
}

Both arrays are either live-in or live-out, hence no direct
scalarization is possible. However, the data is pipelined across
the reads: read a[i+1] at iteration i is read as a[i] at itera-
tion i + 1. Consequently, each iteration should require only
one memory access (a[i+1]) the other one (a[i]) being ob-
tained through some pipeline registers. However, this would
work only fori > 2, once the pipeline is in steady state. Hence



New Insights on Scalar Promotion with the Polyhedral Model

the need to add initialization iterations or ghost iterations to
have a steady state pipeline for any iteration i > 1:
for(i=1-8;p; i<N-1+0;,; i++) {
pipeline[i+1] = in[i+1]; //P
if(1<i<N-1)
out[i] = pipeline[i] +
pipelinel[i+1]1; //S
3

Now, the shifts §;, and §;,, must be tuned so each read of
pipeline byS is defined be some instance of P. This might be
infered from an array dataflow analysis of pipeline reads.
The operation producing pipeline[i+1] (read 2 of (S,i))
is:
hs (i) = (P, i)

Hence it is always defined whatever §;. The operation pro-
ducing pipelinel[i] is:

hs1(i) = if(i + 8;¢ = 2) then (P, i) else L

Hence, the read pipeline[i] by (S, i) is defined provided
i+38;, > 2 forany i € Ds. To enforce a definition for i > 1,
we must have 2 — §; < 1 or equivalently §; > 1. We take the
smallest solution to minimize the amount of ghost iterations:
8i¢ = 1. Any value for §;,, work, hence we can avoid ghost
iterations at the end of the loop: §;, = 0.

Finally, an array contraction on the resulting program
gives Opipeline(i) = i mod 2. From this input, our scalarization
algorithm would deduce an unroll factor of 2 and produce
the following code:

for(i=0; i<N-1; i+=2) {
registerl = in[i+1];
if(i=1)
out[i] = register@ + registeri;
register@ = in[i+2];
if(i+1=>1)
out[i+1] = registerl + registero;
}

which emulates the pipeline through the register variables
register® and registerl. We now show how the same
code may be produced for a 2D stencil.

2D Jacobi stencil. Consider the 2D Jacobi stencil depicted
in Figure 2.(a). As discussed in section 4, the reads of state-
ment S might be systolized. To simplify the presentation, we
consider the execution of S for a given outer iteration t. The
code described thereafter will be executed for each iteration
t. Our preprocessing gives the program:
for(i=1-38;r; i<N-1+6iy; i++) {
for(3=1-3Gje; J<N-1+8;u; J++) {
pipeline[i+1,3j] = in[i+1,3j] //P
if(1<i,j<N-1)
outl[i,jl = pipelinel[i-1,3j] +
+ pipelinel[i+1,3j]1; //S
13
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Figure 3. 2D Jacobi stencil: liveness and array contraction of
the pipeline variable with oppejine(i, j) = —i+2j mod 2N +1

Similarly, an array dataflow analysis infers that pipeline
reads by (S, i, j) are defined by some instance of P providing
i >3- 51"[,]' > 2 - 5}"[ andj < N-3+ 51‘,”. Hence, the
optimal shifts are d;, = 2, §;, = 0, §;, = §;, = 1. Applying
an array contraction on the resulting program, we obtain
Opipeline(i, j) = —i+2j mod 2N +1, hence a final size of 2N +1
for pipeline.

Figure 3 depicts the iteration domain of P (o) and S (e)
as well as the liveness range of pipeline[2][2] (in yellow)
from its definition ((P, 1, 2)) to its last use ({S, 3, 2)). Thick red
lines show pipeline array cells mapped to the same location
after array contraction by opejine- For instance, the thick
red line labelled by 3 indicates that pipeline cells written by
(P,-1,1), (P, 1,2) and (P, 3, 3) are all mapped to array cell 3
after contraction. In particular, when (S, 3, 2) is executed, the
contracted array cell 3 is freed and then reused by (P, 3, 3).

Since the size of pipeline after contraction is parametrized,
our method cannot be directly applied. This is resolved by
cutting the iterations in the j direction with a tiling hyper-
plane. Each tile will have to execute ghost iterations with
the same § parameters to ensure the correctness of the code.
Hence, if the tile size across j is b, the footprint of pipeline
would be 2(b + 6, + Jj,) + 1 = 2b + 5. For the scalarization
to saturate the 16 registers of an x86-64 processor, we need
2b +5 < 16, that is b < 5. In our experiments, we take b = 4.
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Figure 4. Separation obtained on the 2D Blur filter kernel

7 Mitigating Control Complexity

This section presents a post-processing of the polyhedral
IR produced by our scalarization algorithm to reduce the
control complexity after code generation by a polyhedral
code generator [3, 22].

At a glance. Consider Example 1 and assume a tiling
¢s(y,x) = ¢r(y,x) = x with tile size b = 4. The tiling is
partially depicted on Figure 4 (points denote instances of
U, full lines represents tile hyperplanes, dashed lines sepa-
rates each iteration ky of the loop unrolling along y). Also,
assume the schedule 0s(T1, y,x) = (T3, 0, y, x), 07 (T1, y, x) =
(T1, 1,4, x,0), 0y (T1,y,x) = (T3, 1,y, x, 1), which reproduces
the original sequential order in each tile. This example will
be referred to as 2D blur tiled in the following. Array con-
traction gives opjyr (X, y) = (x mod 3,y mod 3). Then, our
scalarization algorithm find the following unroll factors U :
y — 3,x — 4. While the code’s runtime is greatly improved
(as discussed in Section 8), we also observe that the 1scc code
generator introduces a significant number of branching in the
generated code to check corner cases. This increase in branch
instructions has a certain impact on the binary size, which
also impacts performance and branch-miss at runtime. To
fix this, we simply separate the steady cases: the iterations
k of unrolled loops executing all the unrolled instances 7;
and the corner cases where some unrolled instance 7 are not
executed. This is illustrated in Figure 4. This way, steady
iterations (most of the iterations) will be free of corner case
conditionals.

Our algorithm. Our code complexity mitigation post-
processing is depiceted on Algorithm 4. First, we list the
origin vertices with k; = 0 for all i. On our example with
ko = k; = 0, we would have Cqy = {(0,0), (0,3), (2,0), (2,3)}.
From there, we compute loop iterations that contain each
vertex s;, that we store in each Z)g". Finally, intersecting
all Z)f;" gives Z)g “! the set of iterations containing all ver-

tices. Finally, the complementary of Z)g “in Z)g” gives the
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Algorithm 4: D£ “! and DN separation

Data: program(Pyy;, 0oy ), Unroll-factors U ~ U
Result: domain-separated program (Psep, Osep)
1 begin

2 Cy—{se{(0,U-1),...,(0,0U,-1)};
3 foreach Statement S do
4 Get each domain Z);i containing §; ;
5 Df — {(FhD) | 0s() =k xT+5}
6 Get full domain Z)£ ult ;
7} - ;,
Z)gu - Q projection, 77 (Z);) ;
o)
8 Using IT € [0, U (t)[x - - X [0, U(tn)[ ;
o D;ll — proj/(i];) {(T, k, 7) |
10 95(7)=1?><t7+ﬁ};
1 Dgorner — Dgll \ Dg"”;
12 foreach Statement S; do
Full full
13 Ds,? —DszNDg™
14 D;}T;}ner «— DS’? n D;arner ;
1l 1
15 Pgep, «— add statement (Sf;” R Z)£ u? );
16 Pgep «— add statement (S;ZO’”” , D;"T’g”” );
17 Osep «— add schedule 6 ; ;
18 end
19 end
20 return (Pyp, Osep)
21 end

Dgomer’i that we add to the final polyhedral IR. This separa-
tion eliminates most of the conditional in loops, thus lowers
branch-instruction at runtime.

8 Experimental Results

This section presents a preliminary experimental evaluation
of our approach.

8.1 Experimental setup

We have implemented our scalarization algorithm and our
separation post-processing using the poco polyhedral compi-
lation framework. The scalarized code was generated using
the polyhedral code generator of 1sL [22]. The systolization
was applied by hand with a slighly different preprocessing:
the pipeline array was explicitely contracted and shifted
each iteration, similarly to a shift register; which adds an
extra penalty. We evaluate our approach on the following
kernels of the Polybench suite [16]: gemm, jacobi-1d, jacobi-
2d, 2mm, gesummv, symm, correlation, covariance, and atax.
We also added 2D-blur-filter, 2D-blur-filter tiled (see Section
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7) and the fibonacci kernel with dynamic programming in
the experiments.

The kernel gemm could not be directly scalarized as no
array is temporary. Hence it was preprocessed with a tiling
such that each tile loads input regions of A and B into private
arrays which are then scalarized. All the kernels use the
double type for its data, except for fibonacci that used int.
All the kernels were compiled using g++ 15.1.1 with the
-03 optimisation flag. The benchmarks were all executed on
an 8 cores x86-64 AMD processor, that features 16 %xmmi
vector/floating point registers, 64KB of L1 and 512KB of L2
cache per core, and a shared L3 cache of 16MB.

The kernels jacobi-1d and jacobi-2d were preprocessed
to use explicitely a pipeline array. The pipeline array was
explicitely contracted and shifted each iteration, which is
slightly less general and efficient than the preprocessing
described on Section 6, but nonetheless lead to interest-
ing speed-ups. For jacobi-1d, this implementation is quite
straightforward, as there is only one dimension, and the cal-
culation only needs three contiguous points. However, for
Jjacobi-2d, to keep the size of the systolic array constant, one
dimension was tiled to make the size of the systolic array
parametrized by the tile size and not by the problem size.

Runtimes events and performances were registered on
both default and scalarized programs using the perf linux
profiling utility. We only monitor events inside the kernel’s
body. Each kernel was run a hundred times for evenly dis-
tributed problem sizes ; for each size N, the kernel was run
10 times and the results were averaged.

8.2 Results

8.2.1 Execution time. We first discuss execution time
speedups of the kernels. The results are depicted in Figure 5.

For the examples where no significant improvements were
observed, there are different reasons. First, for the kernels
correlation (resp. covariance), the scalarized arrays are the
mean and stddev (resp. mean) arrays, which are used in the
first part of the kernel to center and normalize (resp. center)
the input data. However, for these two kernels, there is a
second part of the code, that computes the correlation (resp.
covariance) matrix. From the measures we took, this second
part is more compute-intensive and takes a lot more time
to complete. Thus, the gains obtained by scalarizing these
temporary arrays are almost insignificant compared to the
time the rest of the kernel takes to complete.

Then, the kernels gesummv and symm had their temporary
arrays reduced to a single scalar by our algorithm. However,
when looking at the GIMPLE representation of the optimized
default kernels we saw that the compiler, when given the
-03 flag, was able to see that each datum from the temporary
arrays was only used in a single iteration, and that there
was no dependances inter-iteration for the outermost loops.
Thus, the values were computed using a single scalar value,
and then stored inside the array, therefore eliminating all the
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loads and array manipulations to keep only one store at the
end of each outer iteration. This is probably possible because
the sequential schedule is straightforward and that it can be
easily spotted that it is not needed to compute the values
inside the arrays. Thus, our algorithm seems to make no
difference, as the compiler performs similar optimizations
to our when optimizing agressively. This is for a similar
reason that the kernels jacobi-1d and atax saw no significant
improvements : these examples are simple enough for the
compiler to efficiently optimize them. It is important to note
that even if the runtime results are similar, the compiler
keeps the array whereas our method only uses a few scalars,
thus also reducing the memory footprint taken by temporary
values compared to the compiler-optimized code, which can
be an important factor in memory-constrained architectures
such as embedded ones.

Finally, for the kernel 2mm, the issue is not the access
to data, but rather the access to the program. Indeed, the
measured number of cache references and misses decreased
when scalarizing, even though the runtime is longer. After
investigation, we saw that there were more branch instruc-
tions taken on the scalarized version, and even though the
number of branch mispredictions was lower, these branches
made the instruction pointer "jump" all around the program.
These branches resulted in a significant increase in cache
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misses of the instruction cache, therefore increasing the num-
ber of stalled-cycles-frontend, meaning the processor
could not fetch the instructions rapidly enough to correctly
pipeline the program. It happens because the generated code
is quite complex, and has a lot of added control if statement.

On the other examples, we can observe speedups showing
the effectiveness of our method. On some of these examples,
the speedup obtained by scalarizing can be substantial, as
shown for the examples fibonacci and 2d blur filter - Tiled
where the scalarized code ran up to 3 and 5 times faster
than the default one, and even 15 and 30 times faster for 2d
blur filter - Running example and jacobi-2d. The reason for
such an increase in performances for jacobi-2d and the fact
that the speedup behaves linearly is that the systolisation
array for the default code is parametrized by the size of the
data and thus has a footprint of O(N). overall, our method
has significantly improved execution time for non-reduction
programs.

8.2.2 Data systolization performances. We now discuss
the systolized jacobi speedups described in Figure 5.e and
5.f. The scalarized 1D version has barely any differences as
the initial code is already quite simple. For the 2D version,
the classical code was first pipelined to produce the baseline
code. Then, it was tiled in the vertical direction using a tile
size of b = 4, to bound the pipeline array to a constant
size ; before being scalarized to produce the optimized code.
That way, the pipeline array has a size of 2b + 1 instead of
2N + 1, which allows the storage of its values in the registers.
This is also the reason why the speedup is so important : the
pipeline array in the non-scalarized code has a footprint
of O(N) which leads to more cache misses as the size of the
array increases.

2d-blur-filter “ gemm

scalar[ sep [sepMH scalar[ sep [ sepM
cpu-cycles 966k | 712k | 608k || 32,7M | 33M | 32,5M
instructions 3,2M |[2,7M|1,7M || 124M | 117M | 124M
branch-instructions || 208k | 85k | 22k || 2,6M | 2,6M | 2,6M
branch-misses 136 | 143 | 145 || 5,6k | 5,8k 5,6k
cache-references 200k | 169k | 202k || 2,3M | 2,3M | 2,3M
cache-misses 26k | 16k | 25k || 360k | 386k | 371k

time-elapsed “758ps[583ps[507ps“24,6ms[24,8ms[ 24,4ms ‘

Table 1. Results from iteration separation

8.2.3 Post-processing performances. We finally discuss
the behavior of the iteration separation algorithm on runtime
events. Table 1 shows how Algorithm 4 discussed in Section
7 impacts runtime performances. We compare from scalar
two versions: sep only separates full and corner iterations,
while sepM also separates the different corner iterations in
distincts loops. We observed two different behavior with this
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optimization. For blur-2D, separation greatly lowered the
number of instructions at runtime: sepM dropped the amount
of branch-instructions by a factor of 10. This also affects
runtime, with a 1.3x speedup. On the other hand, certain
kernels like gemm which initially contain few indirections
find no real improvment with the algorithm. We observed
behavior between sep and sepM for every kernel, and we
found little to no differences in runtime events.

9 Conclusion

In this paper, we have proposed a complete algorithm for
array scalarization as a composable pass in a polyhedral com-
piler. We also proposed preliminary preprocessing and post-
processing steps to enable data systolization and to mitigate
the control complexity of the final optimized code. We have
also provided a complete correctness proof of our scalariza-
tion algorithm, completed with an experimental validation
on a set of representative polyhedral kernels used in linear
algebra and signal processing applications.

In the future, we would like to generalize and to auto-
mate our preliminary data systolization preprocessing and
to investigate the interplay of our algorithm with other poly-
hedral optimization passes.
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