
… 4 years later





Reality is much 
more complex, 

and actually 
better for 
compilers!



Challenge

Build an Ahead-Of-Time (AOT) code generator
for CPU, GPU and domain-specific HW accelerators
for dense & sparse, many data types
dynamic shapes
arbitrary fusion scenarios
distributed architectures (on-chip and at scale)



Infrastructure for Compiler Construction



ML for Systems is Everywhere

Databases: The Case for Learned Index Structures
Compilers: MLGO: A Machine Learning Guided Compiler Optimizations Framework
Hardware Design: A graph placement methodology for fast chip design
Accelerator Design: Apollo: Transferable Architecture Exploration
Clustem Management: Autopilot: workload autoscaling at Google
Configuration Tuning: Google Vizier: A Service for Black-Box Optimization
Cache Management: An Imitation Learning Approach for Cache Replacement
Storage Systems: A Bring-Your-Own-Model Approach for ML-Driven Storage Placement in 
Warehouse-Scale Computers

listing selected examples of production systems at Google only…

https://arxiv.org/abs/1712.01208
https://arxiv.org/abs/2101.04808
https://www.nature.com/articles/s41586-021-03544-w
https://arxiv.org/abs/2102.01723
https://dl.acm.org/doi/10.1145/3342195.3387524
https://dl.acm.org/doi/10.1145/3097983.3098043
https://arxiv.org/abs/2006.16239
https://arxiv.org/abs/2501.05651
https://arxiv.org/abs/2501.05651


ML for Compilers

Inlining for size 
experiment

https://dl.acm.org/doi/abs/10.1145/3578360.3580273


Halide (Ragan-Kelley et.al. 2013)

TC (Vasilache et.al. 2018)

Fireiron (Hagedorn et.al. 2020)

TVM (Chen et.al. 2018)

TTile (Tollenaere et.al. 2021)

Also rewrite systems with semantic 
guarantees: Lift, Elevate, Rise, XTC

Performance Engineering & Compilers Unite!
User-Schedulable Languages



Codegen + 
Schedules + 
Retargetable +
Performance 
modeling/feedback



● Algorithm/Model level
Python schedules, Lücke et al.
○ Expose codegen building blocks

to performance engineers
○ Reuse schedules across

models/layers and targets

● IR-level
MLIR transform dialect to construct
“custom codegen flows”, tutorial, recording

Controllable Compiler Optimizations

[CGO 2025]

https://mlir.llvm.org/docs/Dialects/Transform/
https://docs.google.com/presentation/d/1UQ0oYRgi39lKF4fzb2Wm-z7guCmyF7hnRBScRbEz1B0/edit?usp=sharing&resourcekey=0-3VDNsP5FyX7B8nt68A8H-g
https://www.youtube.com/watch?v=P4gUj3QtH_Y


Example: Python (JAX) Schedules

Generates transform IR

.py
def schedule(module: OpHandle) -> None:

  matmul   = module.match_ops(linalg.BatchMatmulOp )

  fill     = module.match_ops(linalg.FillOp)

  for_all  = matmul. tile_to_forall (tile_sizes =[64, 64, 1])

  fill.fuse_into(for_all)

  for_all2 = matmul. tile_to_forall (tile_sizes =[4, 32, 1])

  # ...

.mlir
func.func public @batch_matmul(%arg0: tensor<128x80x32xf32>, 

 %arg1: tensor<128x32x320xf32>) ->   
       (tensor<128x80x320xf32>) {

    %0   = tensor.empty() : tensor<128x80x320xf32>
    %cst = arith.constant 0.0 : f32
    scf.forall (64, 64, 1) {
      %1 = linalg.fill
      scf.forall (4, 32, 1) {
        %2 = linalg.batch_matmul    
        // [...]
}

 --apply_transform_script
.mlirtransform.sequence (%module: !transform.op<module>) {

  %matmul = transform.match_op name “linalg.batch_matmul” in %module
  // [...]
  %forall, %tiled =  transform.tile_to_forall_op %matmul tile_sizes [64, 64, 1]
  // [...]
  %fused, %containing =  transform.fuse_into_containing_op %forall 
  // [...]
  %forall0, %tiled0 = transform.tile_to_forall_op %tiled tile_sizes [4, 32, 1]
  // [...]

.mlirfunc.func public @batch_matmul(%arg0: tensor<128x80x32xf32>, 
        %arg1: tensor<128x32x320xf32>)->   
       (tensor<128x80x320xf32>) {

    // prepare output
    %0   = tensor.empty() : tensor<128x80x320xf32>
    %cst = arith.constant 0.0 : f32
    %1   = linalg.fill ins(%cst) outs(%0)
    %2   = linalg.batch_matmul ins(%arg0, %arg1) outs(%1)   
    return %2 : tensor<128x80x320xf32>
}

Inject
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The Schedule is the Compiler

def schedule(module: OpHandle) -> None:

  # [...]

  # lower to llvm is actually:

  module.convert_linalg_to_loops_pass()

  module.convert_scf_to_cf_pass()

  module.lower_affine_pass()

  module.convert_vector_to_llvm_pass()

  module.convert_math_to_llvm_pass()

  module.finalize_memref_to_llvm_conversion_pass()

  module.func_to_llvm_pass()

  module.reconcile_unrealized_casts_pass()

Every pass can be initiated through this interface
    module.run_pass(”MyPassName”)

    with handle.apply_patterns():

      structured.ApplyTilingCanonicalizationPatternsOp()

      loop.      ApplyForLoopCanonicalizationPatternsOp()

      transform. ApplyCanonicalizationPatternsOp()

1. Schedule completely drives the compiler 2. Constructing new Passes on-the-fly

- Not possible with any ML compiler until now
- Combination of patterns does not have to be 

known statically
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Proposal: TLO = Tile-Level Operations

2D Pareto surface/frontier:
performance vs.
code size vs.
model specialization

TLO
=

dynamic/static 
interface

Run-time: bytecode interpretation with generic 
control flow and dynamic dispatch of TLOs

AOT: synthesis and code generation for 
10x-10000x of TLO implementations

By Johan Dréo https://en.wikipedia.org/wiki/Pareto_front#/media/File:Front_pareto.svg

https://en.wikipedia.org/wiki/Pareto_front#/media/File:Front_pareto.svg


Proposal: TLO = Tile-Level Operations

● TLO specification language
○ Static and Dynamic input/output shapes
○ Strides, layouts, data types, etc.
○ Constraints on the above (e.g., ranges of admissible sizes and strides)



Proposal: TLO = Tile-Level Operations

● Bytecode language = framework/platform/domain-specific
○ Instantiate a specific bytecode language,

using the TLO specification language
○ Generic control flow & memory management + instance-specific ops
○ A TLO graph is dynamically interpreted by default

○ Focus on making AOT compilation possible



TLO Challenges?

● Performance
○ Temporal reuse across TLOs through memory (caches, scratchpad) only:

may lose the register-level reuse benefits of finer-grained fusion
○ Bytecode interpretation
○ Code size tradeoffs

● Dynamic dispatch
○ Super-fast, from TLO signatures to implementations
○ What about dynamic shapes? fusion?
○ Memoization for loopy bytecode



TLO Challenges?

● Code generation
○ Risks largely mitigated by existing MLIR-based codegen efforts

→ natural fit for structured ops, and the transform dialect
○ Classical autotuning immediately applicable but not required
○ Manual implementation of key ops remains possible (reuse libraries…)

● Automatic instantiation of target/domain-specific bytecode language
○ Next generation autotuning required

Classification and synthesis for a minimum performance criterion
Pareto surface: performance vs. code size vs. domain specialization

○ Deployment into existing frameworks and execution environments



What About Performance Portability?

Ultra Pro Flash Nano



Example:
Waves in the Cloud

Platforms

● NERSC Perlmutter
1,536 GPU accelerated nodes with 
1 AMD Milan CPU and 4 NVIDIA 
A100 GPUs

● Google Cloud reservation
1,679 TPU v6e (Trillium)
1.5 ExaFLOPS (bf16)
53 TB of HBM
3.2 TB/s bisection bandwidth



Application: Oceananigans.jl
https://clima.github.io/OceananigansDocumentation

Simulation of baroclinic instability on 
an Earth-like planet: essential features 
of ocean and atmosphere interactions

Multiple integrals and solvers:
implicit vertical diffusion

hydrostatic pressure anomaly

vertical velocity

horizontal velocities

5th-order WENO-based advection schemes

tracers suitable for ultra-high-resolution

55-term polynomial approximation to the TEOS10 
equation of state for density as a function of 
oceanic temperature, salinity, and pressure

https://clima.github.io/OceananigansDocumentation


Weak Scaling Experiments: GPU /
Placement and Collectives



What about TPUs? And Why?



What about TPUs? And Why?

What FLOPS?
(Osaki emulation)



TPU v2
- Domain-specific AI supercomputing 
- 256 chips distributed shared memory

2017

2018

TPU v3
- Liquid cooling
- 1k chips distributed shared memory

2022

TPU v5e
- Efficient and scalable training and serving
- 256 chips, scalable to 10s of k chips

2024

TPU v5p
- Programmable Sparsecores for embeddings 
- 9k chips with distributed shared memory

2020

TPU v4
- Optically reconfigurable 3D Torus
- 4k chips with distributed shared memory

20x8x

TPU v6e
- 67% more energy efficient than 5e
- 256 chips, scalable to 100 k chips

2023

What about TPUs? Energy Efficiency and Scale



“Look mom, no MPI!”
Ad-hoc runtimes and high-level composable abstractions

https://cloud.google.com/blog/products/compute/using-cloud-tpu-multislice-to-scale-ai-workloads

https://cloud.google.com/blog/products/compute/using-cloud-tpu-multislice-to-scale-ai-workloads


Flurry of GPU acceleration options
CUDA Kernels / OpenCL-C
SYCL
Kokkos
CUTLASS
Triton (PyTorch)
Pallas (JAX)
Turbine (AMD)
Mojo (Modular)
CuTile (Nvidia)

and more coming and going…

Kernel programming to the rescue

More broadly
“If high level fails, try lower level”
Folklore: high-level language

   ⇓
        abstraction penalty

Motivations: escape hatch for…
● Performance tricks
● Extra expressiveness

e.g. ragged or sparse tensors
● Quick experiments



We can do better than kernel programming…

Enzyme Framework: AutoDiff for LLVM/MLIR
Billy Moses (UIUC / Google)

https://enzyme.mit.edu
https://github.com/EnzymeAD/Enzyme-JAX
https://polygeist.llvm.org

https://enzyme.mit.edu
https://github.com/EnzymeAD/Enzyme-JAX
https://polygeist.llvm.org/


Enzyme-JAX
Also for C++, CUDA, Julia, Fortran, Rust



Science → LLVM → MLIR → Heterogeneous Platform 



Science → LLVM → MLIR → Heterogeneous Platform 

Future work: rather than raising abstractions from low-level imperative code:
Leverage higher level semantics from Kokkos (std::mdspan, std::linalg…)



Distribution and Mapping Compute Graphs Are More 
Expressive Than You Think



Challenge

Build an Ahead-Of-Time (AOT) code generator
for CPU, GPU and domain-specific HW accelerators
for dense & sparse, many data types
dynamic shapes
arbitrary fusion scenarios
distributed architectures (on-chip and at scale)

Let’s do it!


