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ML for Systems is Everywhere

Databases: The Case for Learned Index Structures

Compilers: MLGO: A Machine Learning Guided Compiler Optimizations Framework
Hardware Design: A graph placement methodology for fast chip design

Accelerator Design: Apollo: Transferable Architecture Exploration

Clustem Management: Autopilot: workload autoscaling at Google

Configuration Tuning: Google Vizier: A Service for Black-Box Optimization

Cache Management: An Imitation Learning Approach for Cache Replacement

Storage Systems: A Bring-Your-Own-Model Approach for ML-Driven Storage Placement in

Warehouse-Scale Computers

listing selected examples of production systems at Google only...
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Abstract
There is a growing interest in enhancing compiler optimiza-
tions with ML models, yet interactions between compilers
and ML frameworks remain challenging. Some optimiza-
tions require tightly coupled models and compiler internals,
raising issues with modularity, performance and framework
independence. Practical depl and transp for
\ the end-user are also important concerns. We propose ML-
Y CoMPILER-BRIDGE to enable ML model development within
\ a traditional Python framework while making end-to-end in-
A tegration with an optimizing compiler possible and efficient.
¥ We evaluate it on both research and production use cases, for
training and inference, over several optimization problems,
multiple compilers and its versions, and gym infrastructures.
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ML and Reinforcement Learning (RL) approaches have been
proposed to improve optimizations like vectorization [21, 36],
loop unrolling, distribution [25, 43, function inlining [27, 47],
register allocation [17, 26, 46, 50], prediction of phase se-
quences [5, 23, 24], among many others [2, 53]. More specifi-
cally, the widely used LLVM compiler [29] has support for RL-
based inlining decisions from version 11, and RL-based evic-
tion decisions in its register allocator from version 14 [46].
The title of our paper acknowledges this growing trend and
anticipates the needs of the ML-enabled optimizations that
are yet to come, in the spirit of Landis’ seminal paper [28] on
the diversity of existing and future programming languages.

Setting up an ML-based compiler optimization is a chal-
lenging task. In addition to model design, it involves special-
ized data collection, compiler engineering, packaging:

RL4REAL: Reinforcement Learning for Register

Allocation

S. VenkataKeerthy
1T Hyderabad
India

Rohit Aggarwal
IIT Hyderabad
India

Abstract

We aim to automate decades of research and experience in
register allocation, leveraging machine learning. We tackle
this problem by embedding a multi-agent reinforcement
learning algorithm within LLVM, training it with the state
of the art techniques. We formalize the constraints that pre-
cisely define the problem for a given instruction-set archi-
tecture, while ensuring that the generated code preserves
semantic correctness. We also develop a gRPC based frame-
work providing a modular and efficient compiler interface
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problem is reducible to graph coloring, which is one of the
classical NP-Complete problems [8, 22]. Register allocation
as an optimization involves additional sub-tasks, more than
graph coloring itself [8]. Several formulations have been
proposed that return exact, or heuristic-based solutions.
Broadly, solutions are often formulated as constraint-based
optimizations [34, 38], ILP [3, 5, 12, 42], PBQP [31], game-
theoretic approaches [45], and are fed to a variety of solvers.
In general, these approaches are known to have scalability
issues. On the other hand, heuristic-based approaches have
been widely used owing to their scalability: reasonable solu-

for traininﬁ and inference. Our aggroach is architecture in-
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Performance Engineering & Compilers Unite!
User-Schedulable Languages

+ Loop Tiling
T . tc::IslKernelOptions: :makeDefaultM
E i o, xo, ko, yi, xi, ki = s[Cl.tile(y, x, k, 8, 8, 8) P
Input: Algorithm 2l et SRR .scheduleSpecialize(false)
blurx(x,y) = in(x-1,y) fo;os;oxéni;arr\gﬁég%é)_ .tile({4, 32})
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L~ TTile (Tollenaere et.al. 2021) Fireiron (Hagedorn et.al. 2020)
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Abstract

Achieving high efficiency on Al operators demands precise
control over computation and data movement. However, ex-
isting scheduling languages are locked into specific compiler
ecosystems, preventing fair comparison, reuse, and evalua-
tion across frameworks. No unified interface currently de-
couples scheduling specification from code generation and
measurement. We introduce XTC, a platform that unifies
scheduling and performance evaluation across compilers.
With its common API and reproducible measurement frame-
work, XTC enables portable experimentation and accelerates
research on optimization strategies.

1 Introduction

For performance engineers and researchers, achieving high
efficiency on Al workloads operators such as matrix mul-
tiplication or convolution is a demanding task. It involves
finding a delicate balance between computation and data
movement to ensure that hardware units are continuously
utilized with minimal stalls and idle time [1].

1.1 Automation or manual tuning ?

It is therefore crucial to structure code so that each hard-
ware resource remains continuously engaged in useful com-
putation. Typically, the affine loop nests implementing an
operator are transformed through a series of optimizations
to enable vectorization, software pipelining, multi-core mul-

_{ Driver (autotuner or human expert) j

| |

High-level Design space
scheduling exploration
language strategies
(§5.1) (§5.2)

[ Unified scheduling language (§ 3) J

Code generator backends (§ 4.1)

TVM, MLIR,
Tensor Expr.| | transform
Schedule dialect

Performance metrics

On-chip validation and mea-
surement harness (§ 4.2)

Figure 1. XTC’s high-level components and their interac-
tions. XTC allows to decouple research on scheduling strate-
gies from code generation, validation and measurement.

and delivered as hardware-specific libraries for compute-
H tocl, For i MET 2] L sbo Liol




Controllable Compiler Optimizations

e Algorithm/Model level
Python schedules, Lucke et al.
o Expose codegen building blocks
to performance engineers
o Reuse schedules across
models/layers and targets

e IR-level
MLIR transform dialect to construct
“custom codegen flows”, tutorial, recording

The MLIR Transform Dialect

Your compiler is more powerful than you think

[CGO 2025]

Martin Liicke, U. Edinburgh

Oleksander Zinenko, Google DeepMind
Albert Cohen, Google DeepMind
William Moses, Google DeepMind and UIUC
Michel Steuwer, TU Berlin

Abstract

To take full advantage of a specific hardware target, perfor-
mance engineers need to gain control on compilers in order
to leverage their domain knowledge about the program and
hardware. Yet, modern compilers are poorly controlled, usu-
ally by configuring a sequence of coarse-grained monolithic
black-box passes, or by means of predefined compiler anno-
tations/pragmas. These can be effective, but often do not let
users precisely optimize their varying compute loads. As a
consequence, performance engineers have to resort to imple-
menting custom passes for a specific optimization heuristic,
requiring compiler engineering expert knowledge.

In this paper, we present a technique that p
grained control of general-purpose compilers by
the Transform dialect, a controllable IR-based tra
system implemented in MLIR. The Transform di
ers performance engineers to optimize their y
pute loads by composing and reusing existing—I
hidden—compiler features without the need tc
new passes or even rebuilding the compiler.

We demonstrate in five case studies that thy
dialect enables precise, safe composition of co1
formations and allows for straightforward inte,
state-of-the-art search methods.

—~

and to perform specific optimizations parameterized by their
corresponding flags— e.g. apply loop invariant code motion on
all loops. However, this coarse level of control is increasingly
insufficient to optimize programs for today’s heterogeneous
hardware that require precise optimization decisions. Prag-
mas, or compiler annotations in the source code, provide finer
grained control—e.g. vectorization or unrolling hints. These
are effective but their implementation requires in-depth and
non-modular changes to the compiler, hence their restriction
to specific cases anticipated by compiler engineers.

Often specific parts of a program dominate the overall
runtime and are worth optimizing precisely or offloading to

DEVELOPERS MEETING

Tutorial: Controllable Transformations in MLIR



https://mlir.llvm.org/docs/Dialects/Transform/
https://docs.google.com/presentation/d/1UQ0oYRgi39lKF4fzb2Wm-z7guCmyF7hnRBScRbEz1B0/edit?usp=sharing&resourcekey=0-3VDNsP5FyX7B8nt68A8H-g
https://www.youtube.com/watch?v=P4gUj3QtH_Y

Example: Python (JAX) Schedules

transform.sequence

def schedule (module: OpHandle) -> None: Py func.func public @batch_matmul(%arg®: tensor<128x86x32xf32>,

matmul = module.match ops (linalg.BatchMatmulOp ) %argl: tensor<128x32x320xf32>)->
fill = module.match ops (linalg.FillOp) (tensor<128x80x320xf32>) {
for all = matmul. tile to forall (tile sizes=[64, 64, 1]) // prepare output
fill. fuse_into (for_all) %0 = tensor.empty() : tensor<128x80x320xf32>
for all2 = matmul. tile to forall (tile sizes=[4, 32, 1]) %cst = arith.constant 0.6 : f32
# %1 = linalg.fill ins(%cst) outs(%0)

%2 = linalg.batch_matmul ins(%arg®, %argl) outs(%1)

return %2 : tensor<128x80x320xf32>

}
Generates transform IR
/lnject
--apply_transform_script
.mlir

($module: !transform.op<module>) {

$matmul transform.match_op name “linalg.batch_matmul” in %module
/171
$forall, %tiled = transform.tile_to_forall_op %matmul tile sizes [64, 64, 1]

1110001

$fused, %containing = transform.fuse_into_containing_op %forall

/171

$forall0, %tiled0 = transform.tile_to_forall_op %tiled tile sizes [4, 32, 1]
/71

.mlir

.mlir

%argl: tensor<128x32x320xf32>) ->
(tensor<128x80x320xf32>) {

: tensor<128x80x320xf32>

: f32

%0 = tensor.empty()
%cst arith.constant 0.0
scf.forall (64, 64, 1) {
%1 = linalg.fill
scf.forall (4, 32, 1) {
%2 = linalg.batch_matmul
/70

func.func public @batch_matmul(%arg®: tensor<128x80x32xf32>,




1.

The Schedule is the Compiler

Schedule completely drives the compiler

def schedule(module: OpHandle) -> None:
#[...]
# lower to llvm is actually:
module.convert linalg to loops pasq)
module.convert scf to cf pasg()
module.lower affine pass()
module.convert vector to llvm pasg)
module.convert math to 1llvm pasg)
module.finalize memref to llvm conversion pass$)
module.func to llvm pass()

module.reconcile unrealized casts pasg)

|

Every pass can be initiated through this interface
module.run pass(”MyPassName”)

2.

Constructing new Passes on-the-fly

with handle.apply patterns():
structured. ApplyTilingCanonicalizationPatternsOg)
loop. ApplyForLoopCanonicalizationPatternsOp)

transform ApplyCanonicalizationPatternsOx)

- Not possible with any ML compiler until now
- Combination of patterns does not have to be
known statically



Proposal: TLO = Tile-Level Operations

f1 O
2D Pareto surface/frontier: z 0 Y g
performance vs. al o°
code size vs.
model specialization

f2(A) < £2(B) f2

Run-time: bytecode interpretation with generic
control flow and dynamic dispatch of TLOs TLO

AOT: synthesis and code generation for dygamic/static
10x-10000x of TLO implementations interface


https://en.wikipedia.org/wiki/Pareto_front#/media/File:Front_pareto.svg

Proposal: TLO = Tile-Level Operations

e TLO specification language
o Static and Dynamic input/output shapes
o Strides, layouts, data types, etc.
o Constraints on the above (e.g., ranges of admissible sizes and strides)



Proposal: TLO = Tile-Level Operations

e Bytecode language = framework/platform/domain-specific

O

Instantiate a specific bytecode language,
using the TLO specification language

Generic control flow & memory management + instance-specific ops
A TLO graph is dynamically interpreted by default

Focus on making AOT compilation possible



TLO Challenges?

e Performance
o Temporal reuse across TLOs through memory (caches, scratchpad) only:
may lose the register-level reuse benefits of finer-grained fusion
o Bytecode interpretation
o Code size tradeoffs
e Dynamic dispatch
o Super-fast, from TLO signatures to implementations
o What about dynamic shapes? fusion?
o Memoization for loopy bytecode



TLO Challenges?

e Code generation
o Risks largely mitigated by existing MLIR-based codegen efforts
— natural fit for structured ops, and the transform dialect
o Classical autotuning immediately applicable but not required
o Manual implementation of key ops remains possible (reuse libraries...)
e Automatic instantiation of target/domain-specific bytecode language
o Next generation autotuning required
Classification and synthesis for a minimum performance criterion
Pareto surface: performance vs. code size vs. domain specialization
o Deployment into existing frameworks and execution environments



What About Performance Portability?
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Example:
Waves in the Cloud

Platforms

e NERSC Perimutter
1,536 GPU accelerated nodes with
1 AMD Milan CPU and 4 NVIDIA
A100 GPUs

e Google Cloud reservation
1,679 TPU vée (Trillium)
1.5 ExaFLOPS (bf16)
53 TB of HBM
3.2 TB/s bisection bandwidth

Making Waves in the Cloud: A Paradigm Shift for Scientific
Computing and Ocean Modeling through Compiler Technology
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Abstract

Ocean and climate models are today limited by compute resources,
forcing approximations driven by feasibility rather than theory.
They consequently miss important physical processes and decision-
relevant regional details. Advances in Al-driven supercomputing —
specialized tensor accelerators, Al compiler stacks, and novel dis-
tributed systems — offer unprecedented computational power. Yet,
scientific applications such as ocean models, often written in For-
tran, C++, or Julia and built for traditional HPC, remain largely in-
compatible with these technologies. This gap hampers performance
portability and isolates scientific computing from rapid cloud-based
innovation for Al workloads. In this work, we bridge that gap by
transpiling a Julia-based ocean model (Oceananigans) using the
MLIR compiler infrastructure. This process enables advanced op-
timizations, deployment on Al hardware (e.g., Google TPUs), and
automatic differentiation. Our results demonstrate that cloud-based
hardware and software designed for Al workloads can significantly
accelerate climate simulations, opening a path for climate modeling
to benefit from cutting-edge computational advances.

2 Justification for ACM Gordon Bell Prize for
Climate Modeling

Automated compiler-based acceleration and retargeting of an ocean
model, from GPU-based HPC to TPUs. The model is implemented
in Julia with CUDA kernels, while the TPUs only support domain-
specific compute graphs. Our demonstration reduces the barrier to
entry for scientific computing on cloud systems, which are among
today’s largest computers.

“Correspondence: w illinois.edu

Author’s Contact Information: William S. Moses'¥, Mosé Giordano*, Avik Pal’,
Gregory Wagner®, Ivan R Ivanov, Paul Berg”, Johannes Blaschke, Jules Merckx®,
Arpit Jaiswal®, Patrick Heimbach*, Son Vu, Sergio Sanchez-Ramirez, Simone Sil-
vestri, Nora Loose*, Ivan Ho, Vimarsh Sathia’, Jan Hueckelheim®, Johannes De Fine
Licht, Kevin Gleason®, Ludovic Rass, Gabriel Baraldi, Dhruv Apte®, Lorenzo Chelini®,

3 Performance Attributes

Performance Attribute This Submission
Category achievement scalability
Type of method used semi-implicit
Results reported on the basis of ~ whole application except I/O
Precision reported double precision (GPU)

emulated double precision (TPU)
System scale results measured on full-scale system
Measurement mechanism timers, FLOP count

4 Overview of the Problem

Climate is governed by planetary fluid dynamics. This submission
focuses on the core of global climate models: simulations of the
fluid dynamics of the ocean and atmosphere that dictate the large-
scale structure and long-term evolution of Earth’s climate. Fluid
dynamical processes underpin phenomena like equator-to-pole
heat transport, ENSO, the jet stream, air-sea interaction, and the
thermohaline circulation, all of which drive variability and set
the climate’s memory and predictability [13, 19, 36]. Accurately
simulating climate requires ocean and atmospheric dynamical cores
to solve the governing equations of fluid motion as efficiently and
accurately as possible.

The need for high resolution. Influential climate processes cover a
wide range of interacting spatial scales [18], from planetary (10, 000
km), synoptic (1,000 km), tropical cyclones and ocean geostrophic
eddies (10 — 200 km), atmospheric mesoscale convective systems
and ocean submesoscale processes (1 — 10 km), internal gravity
waves, clouds, turbulent diffusion, convective mixing on scales (10
m), and down to the dissipation of kinetic energy (1 mm). Because
current global ocean and atmosphere models cannot fully resolve
all these small-scale processes, many processes are represented us-
ing simplified approximations called parameterizations. However,



Application: Oceananigans.jl
https://clima.qithub.io/OceananigansDocumentation

Simulation of baroclinic instability on
an Earth-like planet: essential features
of ocean and atmosphere interactions

Multiple integrals and solvers:
implicit vertical diffusion
hydrostatic pressure anomaly
vertical velocity
horizontal velocities
5th-order WENO-based advection schemes
tracers suitable for ultra-high-resolution

55-term polynomial approximation to the TEOS10
equation of state for density as a function of
oceanic temperature, salinity, and pressure
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Ocean and climate models are today limited by compute resources,
forcing approximations driven by feasibility rather than theory.
They consequently miss important physical processes and decision-
relevant regional details. Advances in Al-driven supercomputing —
specialized tensor accelerators, Al compiler stacks, and novel dis-
tributed systems — offer unprecedented computational power. Yet,
scientific applications such as ocean models, often written in For-
tran, C++, or Julia and built for traditional HPC, remain largely in-
compatible with these technologies. This gap hampers performance
portability and isolates scientific computing from rapid cloud-based
innovation for Al workloads. In this work, we bridge that gap by
transpiling a Julia-based ocean model (Oceananigans) using the
MLIR compiler infrastructure. This process enables advanced op-
timizations, deployment on Al hardware (e.g., Google TPUs), and
automatic differentiation. Our results demonstrate that cloud-based
hardware and software designed for Al workloads can significantly
accelerate climate simulations, opening a path for climate modeling
to benefit from cutting-edge computational advances.

2 Justification for ACM Gordon Bell Prize for
Climate Modeling

Automated compiler-based acceleration and retargeting of an ocean
model, from GPU-based HPC to TPUs. The model is implemented
in Julia with CUDA kernels, while the TPUs only support domain-
specific compute graphs. Our demonstration reduces the barrier to
entry for scientific computing on cloud systems, which are among
today’s largest computers.
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4 Overview of the Problem

Climate is governed by planetary fluid dynamics. This submission
focuses on the core of global climate models: simulations of the
fluid dynamics of the ocean and atmosphere that dictate the large-
scale structure and long-term evolution of Earth’s climate. Fluid
dynamical processes underpin phenomena like equator-to-pole
heat transport, ENSO, the jet stream, air-sea interaction, and the
thermohaline circulation, all of which drive variability and set
the climate’s memory and predictability [13, 19, 36]. Accurately
simulating climate requires ocean and atmospheric dynamical cores
to solve the governing equations of fluid motion as efficiently and
accurately as possible.

The need for high resolution. Influential climate processes cover a
wide range of interacting spatial scales [18], from planetary (10, 000
km), synoptic (1,000 km), tropical cyclones and ocean geostrophic
eddies (10 — 200 km), atmospheric mesoscale convective systems
and ocean submesoscale processes (1 — 10 km), internal gravity
waves, clouds, turbulent diffusion, convective mixing on scales (10
m), and down to the dissipation of kinetic energy (1 mm). Because
current global ocean and atmosphere models cannot fully resolve
all these small-scale processes, many processes are represented us-
ing simplified approximations called parameterizations. However,


https://clima.github.io/OceananigansDocumentation
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What about TPUs? And Why?
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What about TPUs? And Why?

Pod Size

(chips) 4096 8960 9216
oy 32GB 95 GB 192 GB

Capacity @ 1.2 TBps HBM @ 2.8 TBps HBM _ @ 7.4 TBps HBM

""""" g e What FLOPS?
Peak Flops ' (Osaki emulation)

per chip 275 TFLOPS 459 TFLOPS 4614 TFLOPS




What about TPUs? Energy Efficiency and Scale

8x
A
) . _ TPU v4 TPU v5p
- Domain-specific Al supercomputing - Optically reconfigurable 3D Torus - Programmable Sparsecores for embeddings
- 256 chips distributed shared memory - 4k chips with distributed shared memory - 9k chips with distributed shared memory
2018 2022 2024
2017 2020 2023
TPU v3 TPU v5e TPU vée
- Liquid cooling - Efficient and scalable training and serving - 67% more energy efficient than 5e

- 1k chips distributed shared memory - 256 chips, scalable to 10s of k chips - 256 chips, scalable to 100 k chips

WHiiiit




“Look mom, no MPI!”
Ad-hoc runtimes and high-level composable abstractions

< Data-center Network L fca
OO00000 (OO0
Slice 1 ___|ogagsia Ny Slice 2
(Blue) (Pink)
Pod 1 Pod 2
TPU Chips Inter-Chip Interconnect (ICl)

https://cloud.qgoogle.com/blog/products/compute/using-cloud-tpu-multislice-to-scale-ai-workloads



https://cloud.google.com/blog/products/compute/using-cloud-tpu-multislice-to-scale-ai-workloads

Kernel programming to the rescue

Flurry of GPU acceleration options More broadly

CUDA Kernels / OpenCL-C “If high level fails, try lower level”
SYCL Folklore: high-level language
Kokkos U

CUTLASS ,

Triton (PyTorch) abstraction penalty
Pallas (JAX)

Turbine (AMD) Motivations: escape hatch for...

Mojo (Modular) e Performance tricks

CuTile (Nvidia) e Extra expressiveness

e.g. ragged or sparse tensors

and more coming and going... S ke



% We can do better than kernel programming...

Enzyme Framework: AutoDiff for LLVM/MLIR
Billy Moses (UIUC / Google)

oA
C.

julia

Optimize Optimize

Enzyme %>® CodeGen

https://enzyme.mit.edu
https://qgithub.com/EnzymeAD/Enzyme-JAX
https://polygeist.llvm.org

Lower

£ @



https://enzyme.mit.edu
https://github.com/EnzymeAD/Enzyme-JAX
https://polygeist.llvm.org/

o Enzyme-JAX
Also for C++, CUDA, Julia, Fortran, Rust

from enzyme_ad.jax import cpp_call
# Forward-mode C++ AD example

@jax.jit
def something(inp):
y = cpp_call(inp, out_shapes=[jax.core.ShapedArray([2, 3], jnp.float32)], source="""
template<std::size_t N, std::size_t M>
void myfn(enzyme::tensor<float, N, M>& out®, const enzyme::tensor<float, N, M>& in0) {
out® = 56.0f + inB(0, 0);
}
et fn="myfn")
return y

ones = jnp.ones((2, 3), jnp.float32)
primals, tangents = jax.jvp(something, (ones,), (ones,) )

# Reverse-mode C++ AD example

primals, f_vjp = jax.vjp(something, ones)
(grads,) = f_vip((x,))




Science — LLVM — MLIR — Heterogeneous Platform

implemented asl '

Julia/Reactant

Oceananigans Other Julia Software C/C++/Fortran/Rust/Swift/Python

Julia code
function difference_kernel(y, x)
i = threadIdx().x + (blockIdx().x - 1) * blockDim().x
if i <= length(x) - 2
y[il = x[i] - 2 % x[i+1] + x[i+2]
end
end

function model(...)
@cuda threads=... blocks=
@cuda threads=... blocks=
end

difference_kernel(y, x)
difference_kernel(x, y)

l]ulia Compiler

LLVM IR
define void @julia_difference_kernel_890({}* %y, {}* %x) {
top:

call i32 @llvm.nvvm.read.ptx.sreg.tid.x()
add nuw nsw i32 %3, 1

%arraylen = load i64, i64% %arraylen_ptr, align 8
%13 = add nsw i64 %arraylen, -2

%.not = icmp sgt i64 %11, %13

br i1 %.not, label % on.ret, label %L31

om

L31: preds top
%14 = add nsw i64 %11, -1
%inbounds = icmp ult i64 raylen
br i1 %inbounds, label %idx label %oob
oob: preds = %L31
call fastcc void @gpu_report_exception()
unreachable
idxend26: ; preds = %idxend17

%17 = bitcast {}* %2 to doublexx

%arrayptr33 = load doublex, doublexx %17

%18 = getelementptr inbounds double, doublex
%arrayref = load double, doublex %18

%19 = getelementptr inbounds double, double* %arrayptr33, i64 %11
%arrayref11 = load double, doublex %19

%20 = fmul double %arrayrefll, 2.000000e+00

arrayptr33, i64 %14

JRaise to MLIR

Enzyme-JAX

L Raise to MLIR

MLIR

func.func @difference_kernel(%y : memref<100xf64>, %x : memref<100xf64>) {
1ffine.parallel %argl = @ to 100 {
%x1 = affine.load %x[%argl]
%x2 = affine.load %x[%argl * 1]

ne.store %sum, %y[%argl]

}
lMultidimensionalization
%x1 =s slice %x[1:98]
%x2 = o.slice %x[2:99]
F%mul multiply %x2, tensor<2.0>
tablehlo.add %x1, %mul
lTensor Raising
%i1 = convolve %x, tensor<[1.0, -2.0, 1.0]>
%i2 = lo.convolve %i1, tensor<[1.0, -2.0, 1.0]>
lTensor Optimization
[%res = stablehlo.convolve %x, tensor<[1.0, -4.0, 6.0, -4.0, 1.0]>

Targeting TP Targeting GPU T Targeting CPU
o
N -
TPU cloud GPU cluster CPU cluster
TPU node 1
convolve %x [1:50] GPU node 1

send %x[45:50]
recv %x[50:55]

T [crunceen

TPU node 2
convolve %x [50:100]

send %x[50:55]
recv %x[45:50]




Science — LLVM — MLIR — Heterogeneous Platform

function difference_kernel(y, x)
i = threadIdx().x + (blockIdx().x - 1) * blockDim().x

L Raise to MLIR
Oceananigans ‘ ‘ Other Julia Software C/C++/Fortran/Rust/Swift/Python MLIR
c.func @difference_kernel(%y : memref<100xf64>, %x : memref<100xf64>) {
et ety s ) . parallel %argl = @ to 100 {
P <3 1 %x1 = affine.load %x[%argl]

: %x2 = e.load %x[%argl % 1]

' sin

'

'

store %sum, %y[%argl]

Julia code ’

Future work: rather than raising abstractions from low-level imperative code:
Leverage higher level semantics from Kokkos (std::mdspan, std::linalg...)

%.not = icmp sgt 164 %11, %13 1 e -
br i1 %.not, label %common.ret, label %L31 : 2
~
' ~
) ' Targeting TP Targeting GPU  ~~ Targeting CPU
= add nsw i64 %11, -1 ' &
ds = icmp ult i64 %14, %arraylen : N
br i1 %inbounds, label %idxend, label %oob ' St
i r s N\
oob: pre L3 © TPU cloud GPU cluster CPU cluster
call fastcc void @gpu_report_exception()
unreachable
TPU node 1
convolve %x [1:50] GPU node 1
send %x[45:50]
idxend26: pre = 1 117 recv %x[50:55]
%17 = bitcast {}* %2 to doublexx
yptr33 = load doublex, doublexx %17
getelementptr inbounds double, doublex %arrayptr33, i64 %14
rayref = load double, doublex %18 I GPU node 2
= getelementptr inbounds double, doublex %arrayptr33, i64 %11 TPU node 2
yref11 = load double, doublex %19 convolve %x [50:100]
fmul double %arrayrefll, 2.000000e+00 send %x[50:55]
" recv %x[45:50]
3 s
lRalse to MLIR J\ \ J




Distribution and Mapping Compute Graphs Are More
Expressive Than You Think

Sharded Matrix Multiplication

mesh = Sharding.Mesh(
reshape(Reactant.devices(), :, 4), (:x, :y)

Listing 1 Reactant code for compiling Julia functions

using Reactant
sharding = Sharding.NamedSharding(mesh, (:x, :y))

x = Reactant.to_rarray(rand(Float32, 8, 4); sharding) a = Reactant. to_rarray(ones(10))
y = Reactant.to_rarray(rand(Float32, 4, 8); sharding) b = Reactant.to_rarray(ones(10))
@jit x x y

sinsum_add(x, y) = sum(sin.(x) .+ y)

lL"Wer to MLIR f = @compile sinsum_add(a, b)

MLIR Pre-Sharding Propagation

module @"reactant_x" attributes {mhlo.num_partitions = 8 : i64, mhlo.num_replicas =1 :
— 164} {
sdy.mesh @mesh = <["x"=2, "y"=4]> f(a: b)
func. func @main(%arg@: tensor<4x8xf32> {sdy.sharding = #sdy.sharding<@mesh, [{"y"},
— {"x"}1>}, %argl: tensor<8x4xf32> {sdy.sharding = #sdy.sharding<@mesh, [{"y"},
— {"x"}1>}) -> tensor<8x8xf32> {

# one can now run the program

%0 = stablehlo.dot_general %argl, %arg@d, contracting_dims = [1] x [@], precision = LiSting 2 Compﬂed MLIR from JUha COde
< [DEFAULT, DEFAULT] : (tensor<8x4xf32>, tensor<4x8xf32>) -> tensor<8x8xf32> . . .
return %0 : tensor<g8x8xf32> module @reactant_sinsum_add attributes {mhlo.num_partitions
)} — =1 : i64, mhlo.num_replicas = 1 : i64} {
3 func.func @main(%arg@: tensor<10xf64>, %argl:
lPropagate Sharding

— tensor<10xf64>) -> tensor<f64> {

MLIR Post-Sharding Propagation %cst = stablehlo.constant dense<@.0> : tensor<f64>

module @"reactant_x" attributes {mhlo.num_partitions = 8 : 164, mhlo.num_replicas =1 :

164} ¢ %0 = stablehlo.sine %argd : tensor<10xf64>
-
func.func @main(%arg0: tensor<dx8xf32> {mhlo.sharding = %1 = stablehlo.add %0, %argl : tensor<10xf64>
— "{devices=[4,2]<=[2,4]T(1,0)}"}, %argl: tensor<8x4xf32> {mhlo.sharding = s = i doell. ’
< "{devices=[4,2]<=[2,4]T(1,0)}"}) —> (tensor<8x8xf32> {mhlo.sharding = %2 = Stablehlo‘reduce(/d lljllt. {'CSt) applles
— "{devices=[4,21<=[2,417(1,0)}"}) { — stablehlo.add across dimensions = [0]
%0 = s ehlo.dot_general %argl, %arg@d, contracting_dims = [1] x [@], precision = _
< [DEFAULT, DEFAULT] {mhlo.sharding = "{devices=[4,2]<=[2,41T(1,0)}"} : < (tensor<10xf64>, tensor<f64>) -> tensor<f64>
< (tensor<8x4xf32>, tensor<4x8xf32>) -> tensor<8x8xf32> return %2 : tensor<f64>
return %@ : tensor<8x8xf32> }
¥

3 3




Challenge

AHead=0t-Time (AQT) code generator
for CPU, GPU and domain-specificHW-accelerators
for dense & sparse, many data types |

dynamic shapes | -
arbitrary fusion scenarios . e s .. ';-"‘:i:».'-:?f'f’

dlstrlbuted architectures (on- Chlp,aniﬁ‘fassal.e), AWV
Let’s do I'l" s '



