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Integer points counting
Exact number of integer points inside a parametrized polytope:

● polytope: finite polyhedron

iteration domain of a loop nest, front of parallel iterations, …

● parameterized polytope

= polytope linearly dependent on integer parameters

= defined by constraints of the form
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Integer points counting
Exact number of integer points inside a parametrized polytope :

● A set of Ehrhart polynomials (also called quasi-polynomials)
● defined on adjacent convex domains (or chambers) of the parameters 

values

Ehrhart polynomial: a (kind of) multivariate polynomial 

● whose variables are the parameters
● whose degree is the dimension of the polytope
● whose coefficients are periodic numbers

○ period = lcm of the vertices coordinates denominators
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Ehrhart polynomial
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- Ph. Clauss. Counting Solutions to Linear and Nonlinear Constraints Through Ehrhart Polynomials: Applications to 
Analyze and Transform Scientific Programs. 10th International Conference on Supercomputing, ICS'96, 1996.

- Ph. Clauss and V. Loechner. Parametric Analysis of Polyhedral Iteration Spaces. Journal of VLSI Signal Processing, 1998.



Barvinok
● Another approach for parametric counting
● Based on mathematician Barvinok's results
● More robust than the previous interpolation-based method
● Periodic numbers ⇒ floors & ceilings
● Implemented in the barvinok library (iscc)
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- Sven Verdoolaege, Rachid Seghir, Kristof Beyls, Vincent Loechner, Maurice Bruynooghe: Counting Integer Points in 
Parametric Polytopes Using Barvinok's Rational Functions. Algorithmica 48(1): 37-66 (2007)

card [n]->{[i,j]: 0<=2*i<n and 3*i<=3*j<n};
$0 := [n] -> { (1/2 * floor((2 + n)/3) + 1/2 * floor((2 + n)/3)^2) : n > 0 }



Counting-based optimizations
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Loop optimization Mathematical support

● Liveness and memory requirement 
analyses for array contraction

● Data layout transformation for 
spatial data locality

● Collapsing of non-rectangular loops
● Algebraic tiling
● Algebraic trapezoidal tiling

● Ehrhart polynomials

● Bernstein expansion for 
polynomial maximization

● Ranking polynomials

● Trahrhe expressions
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Polynomial maximization
● Bernstein polynomials:

○ Form a basis for the space of polynomials
○ Any polynomial can be expressed in this basis through Bernstein 

coefficients
○ The value of the polynomial is bounded by the values of the 

minimum and maximum Bernstein coefficients
○ The direct formula allows symbolic computation of the Bernstein 

coefficients
○ Extension of Bernstein expansion for parameterized multivariate 

polynomial expressions defined over parametric convex 
polytopes
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- Ph. Clauss and I. Tchoupaeva. A Symbolic Approach to Bernstein Expansion for Program Analysis and Optimization. In 
13th International Conference on Compiler Construction, CC 2004.

- Ph. Clauss, F. J. Fernández, D. Garbervetsky, and S. Verdoolaege. Symbolic polynomial maximization over convex sets and 
its application to memory requirement estimation. IEEE Trans. on Very Large Scale Integration (VLSI) Systems, 2009.



Bernstein expansion on parametric polytopes

● Implemented in the barvinok library (iscc)

ub [N]->{[x,y] -> 1/2*x^2+1/2*x+3/2*y^2-y : 0<=x<=N and x<=y<=N};

$0 := ([N] -> { max((-1/2 * N + 2 * N^2)) : N >= 0 }, True)

lb [N]->{[x,y] -> 1/2*x^2+1/2*x+3/2*y^2-y : 0<=x<=N and x<=y<=N};

$1 := ([N] -> { min(-1/2 * N) : N >= 0 }, False)
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Memory requirement analysis
● For a given temporary array

○ Liveness analysis
■ Number of live elements at any iteration I
■ Live(I) = #reads after I - #associated last writes after I

   = Ehrhart polynomial

○ ub Live(I)

= maximum number of live elements

= size of the contracted temporary array
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- Ph. Clauss, D. Garbervetsky, V. Loechner, and S. Verdoolaege. Polyhedral Techniques for Parametric Memory Requirement 
Estimation. In F. Balasa and D. Pradhan, editors, Energy-Aware Memory Management for Embedded Multimedia Systems: 
A Computer-Aided Design Approach, Chapman & Hall/Crc Computer and Information Science. Taylor and Francis, 2011.



Counting-based optimizations

IMPACT 2025 - 15 / 54

Loop optimization Mathematical support

● Liveness and memory requirement 
analyses for array contraction

● Data layout transformation for 
spatial data locality

● Collapsing of non-rectangular loops
● Algebraic tiling
● Algebraic trapezoidal tiling

● Ehrhart polynomials

● Bernstein expansion for 
polynomial maximization

● Ranking polynomials

● Trahrhe expressions



Ranking polynomials
● Rank (or position) of an integer point

○ inside a polytope
○ whose points are listed in lexicographical order 
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Ranking polynomials
● Example:
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Data layout transformation
● Goal: Spatial data locality

○ Organize array elements in the order in which they are accessed
○ Assign to array elements the rank of the iterations referencing 

them
■ Each array element A[X] is referenced at iterations I s.t. 

X=f(I), where f is the affine array reference function
■ If A[X] is referenced more than once, select Imin = lexmin(I)
■ #{I’min≤lex Imin} is the new index of A[X]
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- Ph. Clauss and B. Meister. Automatic memory layout transformation to optimize spatial locality in parameterized loop 
nests. ACM SIGARCH, Computer Architecture News, 28(1), march 2000.

- Vincent Loechner, Benoit Meister, and Philippe Clauss. Precise data locality optimization of nested loops. Journal of 
Supercomputing, 21(1):3776, January 2002.



Counting-based optimizations

IMPACT 2025 - 20 / 54

Loop optimization Mathematical support

● Liveness and memory requirement 
analyses for array contraction

● Data layout transformation for 
spatial data locality

● Collapsing of non-rectangular loops
● Algebraic tiling
● Algebraic trapezoidal tiling

● Ehrhart polynomials

● Bernstein expansion for 
polynomial maximization

● Ranking polynomials

● Trahrhe expressions



Trahrhe expressions
● Opposite problem to ranking: unranking
● Given a point's rank of an integer point in D, what are its integer 

coordinates?

⇒ ranking polynomial inversion:

● Let p be a rank and R(I) be a ranking polynomial: Find I s.t. R(I) = p
● Find the reverse function R-1(p) = T(p)
● T(p) is a sequence of algebraic expressions 
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Trahrhe expressions
● Example:
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Trahrhe expressions
● Example (continued):
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Trahrhe expressions
● Example (continued):
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Collapsing of non-rectangular loops
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● loop collapsing:

● Implemented in OpenMP (clause collapse(n)):
○ OpenMP 3.0: only constant loop bounds
○ OpenMP 5.0: bounds depending only on one unique loop index 

(otherwise : rectangular hull of the loop nest)



Collapsing of non-rectangular loops
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● Non-rectangular loops: load imbalance issue

Example: correlation kernel using 5 threads

● omp schedule(dynamic):
○ time overhead + scalability issues



Collapsing of non-rectangular loops
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● Using Trahrhe expressions to retrieve the iterator values of the original loops
● + lowering the time overhead of Trahrhe expressions’ computations



Collapsing of non-rectangular loops
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● 12 threads/cores AMD Opteron 6172, gcc -O3 -fopenmp

- Ph. Clauss, E. Altintas, and M. Kuhn. Automatic Collapsing of Non-Rectangular Loops. Parallel and Distributed Processing 
Symposium (IPDPS), 2017.
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Algebraic tiling
● Standard rectangular loop tiling: example syr2k (polybench)
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Algebraic tiling
● Standard rectangular loop tiling: example syr2k (polybench)

○ partial tiles issue
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Algebraic tiling
● Standard rectangular loop tiling: example syr2k (polybench)

○ load imbalance issue
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Algebraic tiling
● Standard rectangular loop tiling: example syr2k (polybench)

○ load imbalance issue: even with rectangular domains!
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thread 0           thread 1          thread 2          thread 3       thread 4

22 tiles vs 5 threads



Algebraic tiling
● Slices of quasi-equal volumes (#iterations)
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● Slices of quasi-equal volumes (#iterations)
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Algebraic tiling
● Strategy:

○ slice the parallel loops in #threads slices of quasi-equal 
volumes
■ or a multiple of #threads

○ slice the other loops in any number of slices yielding the best 
performance
■ or use standard tiling

● to fix vectorization or overhead issues
● Loop bounds computed on-the-fly 

○ target volumes = rank of iterations
○ slice/tile bounds = computed trahrhe expressions
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- Clément Rossetti and Philippe Clauss. Algebraic Tiling. IMPACT 2023.



Algebraic tiling
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Algebraic tiling
● trahrhe software: generates the required C header

○ Trahrhe expressions: floating-point computations on complex 
numbers

or

○ Dichotomous search of the roots: 
■ often better time performance
■ no precision nor root finding issues
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- https://webpages.gitlabpages.inria.fr/trahrhe

● pesto source-2-source algebraic tiler
○ in progress
○ linked to pluto and trahrhe



Algebraic tiling
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32 threads/cores, best tile sizes/volumes, vectorization activated, dichotomous root finding



Algebraic tiling
● Standard rectangular tiling

○ some loop kernels (i.e. stencils) require a tile skewing transformation 
to exhibit a parallel loop, which is impossible with algebraic rect. tiling
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- C. Rossetti, A. Hamon, and Ph. Clauss. Algebraic Tiling facing Loop Skewing. IMPACT 2024.
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Algebraic trapezoidal tiling
● For stencil loops

○ as split tiling, diamond tiling, …
○ but with quasi-equal volumes of the trapezoidal tiles
○ applies even when diamond tiling is not applicable (e.g. seidel-2d)

● Strategy:
○ generate a parallel version of the stencil loop nest through a skewing 

transformation
■ where the second inner loop is parallel

○ Analyze the dependencies between the parallel fronts
■ the extreme distance vectors define 2 borders of the tiles
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Algebraic trapezoidal tiling
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x

y

post-skewing parallel fronts



Algebraic trapezoidal tiling
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x

y

post-skewing parallel fronts

● dependencies between successive fronts 
and cone of extreme distance vectors

● constraint: one extreme vector must be (1,0)



Algebraic trapezoidal tiling
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x

y

algebraic rectangular tiling inside x-slices of 
constant width with a fixed target volume per tile

constraint: 
tiles height ≥ slope of the diagonal extreme 
dependence vector ✕ slice width



Algebraic trapezoidal tiling
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x

y
split of the rectangular tiles along the direction 
of the diagonal extreme dependence vector

⇒ parallel trapezoidal tiles



Algebraic trapezoidal tiling
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x

y

parallel fronts of independent trapezoidal tiles
of quasi equal volumes
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Algebraic trapezoidal tiling: seidel-2d
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Algebraic trapezoidal tiling: seidel-2d
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Algebraic trapezoidal tiling vs Diamond tiling
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32 threads/cores, best tile sizes/volumes, vectorization activated, dichotomous root finding

seidel-2d: diamond 
tiling not applicable 
(standard skewing)



Conclusion
● Counting-based optimizations

○ Interesting speedups despite some time overhead
■ runtime tile bounds, floating-point computations, 

dichotomous root finding, …
■ may still be improved

○ Interesting perspectives: algebraic schedule

● Runtime counting-based optimizations
○ for “polyhedral-behaving” kernels
○ made possible thanks to Alain Ketterlin’s work

IMPACT 2025 - 52 / 54



Thank you!

Philippe Clauss
University of Strasbourg + Inria
France


