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Scalar Promotion

Scalar Promotion turn arrays into a collection of scalar variables
Benefits:

e Enable back-end optimizations (vectorization, register alloc.)

@ Reduce memory traffic

int A H i
121: re[z] Lo int a = rand();

; int b = rand();
s T <4 i+ SRA in ;
or (int i=0; i 3; i++) —— int res = rand();

A[i]l = randQ);
for (int i=0; i < 3; i++)
res+= A[i];

res += a;
res += b;
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Scalar Promotion

Scalar Promotion turn arrays into a collection of scalar variables

Benefits:

e Enable back-end optimizations (vectorization, register alloc.)

@ Reduce memory traffic

Challenges:

@ Few registers, large and multiple arrays:
1 memory aware scheduling + array liveness analysis

o Mitigate control complexity

int
int
for

for

A[3];

res = 0;

(int i=0; i < 3;
A[i]l = randQ);
(int i=0; i < 3;
res+= A[i];

i++)

i++)

SRA
—_

int
int
int
res
res

a = rand();

b = rand();
res = rand();
+= a;

+= b;
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Case Study 1: 2D Blur Filter

J
for (j=0; j<N; j++) 4I> ° ce oe oe
for(i=0; i<N; i++) {
P: temp[i,j] = f(input,i); 3 ° ce oe oe
if (i>=2)
C: out [i,j] = 2 ° ce oe oe

temp[i,j] +
temp[i-1,j] + 16 o o e o
temp[i-2,3j];

} 0@—{0—\4—0—> i
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Case Study 1: 2D Blur Filter

for(j=0; j<N; j++) t
for(i=0; 1<N; i++) { 40 (¢} oe oe oe
P: temp[i,j] = f(input,i);
if (i >=2) 30 ) [ ] ) @ [ )
C: out[i,j] =
temp [i , J ] + 2 ] oN ] [ ] °
temp[i-1,3j] +
temp[i-2,3j]; 1 ° m
} [ E—F——F—— oeo—00— i
0 1 3 4
@ Array liveness exposes 3-register scalarization
@ How to distribute the data among the registers? J
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Case Study 2: 1D Convolution

for(i=1; i<N-1; i++) {
out[i] = in[i] + dim[i+1]; //S

}
T\N '
in . i
1 2 3 4
@ No direct scalar promotion J
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Case Study 2: 1D Convolution

for(i=1; i<N-1; i++) {

out [i] = in[i] + in[i+1]; //S Data systolization
}
L in[i+1]
T\N i
in . i

1 2 3 4
@ No direct scalar promotion
@ How to expose data systolization? J

4/17



Related Work

Register tiling: scalar promotion bound to a loop tiling

@ Perfect loop nest, rectangular tiling: [Jimenez'02], with
different tile sizes [Domagala'16]

@ Non-perfect loop nests, affine tiling [Renganarayana’09]
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Related Work

Register tiling: scalar promotion bound to a loop tiling

@ Perfect loop nest, rectangular tiling: [Jimenez'02], with
different tile sizes [Domagala'16]

@ Non-perfect loop nests, affine tiling [Renganarayana’09]

Data systolization:
@ Common hand optimization in hardware design
@ Automation on PPN [Verdoolaege'10] and DPN [Alias'21]
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Contributions

Unified approach for scalar promotion and data systolization
Mitigation of code complexity
Composable with other polyhedral passes

Preliminary validation on Polybenchs
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Source Program

*{Data Systolization}

E Scalarization }

Target Program

4[Control Mitigation}

@ Generic polyhedral scalarization algorithm

@ Preprocessing enabling data systolization

@ Postprocessing of polyhedral IR to mitigate the control
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Contraction-Driven Scalarisation

f[0]=0; f[1]l=1;

for(i=2; i<=N; i++)
flil = f[i-1] + f£[i-2];

result = f[N];

Step 1: Array contraction of(i) = i mod 2 [Thievenaz'24|
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Contraction-Driven Scalarisation
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Contraction-Driven Scalarisation

RO=0;

R1=1;
for(i=2; i<=N; i+=2) {
RO = R1 + RO;
if (i+1 <= N)
Rl = RO + R1; }
result

(N%2==17?R1:R0) ;

Step 1: Array contraction of(i) = i mod 2 [Thievenaz'24|

Step 2: Loop unroll, factor 2

Step 3: Scalarize using i mod 2 =10
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Challenges

@ Multiple arrays with differents mappings. How to unroll?

for(i=1; i<=N; i++) {
for(j=1; j<=N; j++) {
ATi%2,3%3] = B[2i+j%3]
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for(i=1; i<=N; i++) {
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For each loop, collect the modulos and take the lcm:
i Loop i: 2,3 — lem(2, 3) = factor 6
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Challenges

@ Multiple arrays with differents mappings. How to unroll?

for(i=1; i<=N; i++) {
for(j=1; j<=N; j++) {
ATi%2,3%3] = B[2i+j%3]

For each loop, collect the modulos and take the lcm:
i Loop i: 2,3 — lem(2, 3) = factor 6

@ Approach parametrized by an affine schedule
1= consider schedule dimensions instead of loops
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Preprocessing: Data Systolization

for(i=1; i<=N; i++) {
out[i] = in[i] + in[i+1]; //S
}

Step 1: Expose the data pipelining
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for(i=0; i<=N; i++) {
pipeline[i+1] = in[i+1]; //P
if(1<i<N)
out[i] = pipeline[i] + pipeline[i+1]; //S

Step 1: Expose the data pipelining
Step 2: Set initialization iterations from array dataflow analysis
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Preprocessing: Data Systolization

for(i=0; i<=N; i+=2) {
Rl = in[i+1];
if(i >= 1)
out[i] = RO + R1;
RO = in[i+2];
if(i+1 >= 1)
out[i+1] = R1 + RO;

Step 1: Expose the data pipelining
Step 2: Set initialization iterations from array dataflow analysis
Step 3: Contract pipeline array: opjpefine(i) = i mod 2

Step 4: Apply our scalarization procedure
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Multidimensional Case: 2D Convolution

for(i=1; i<N-1; i++) {
for(j=1; j<N-1; j++) {

out[i,j] = in[i-1,3] + ... + in[i+1,j];

}r

]

N-1

B
3 ° |

2 ) | |
1 (<)
i
1 0 1 2 3
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Multidimensional Case: 2D Convolution

for(i=1; i<N-1; i++) {
for(j=1; j<N-1; j++) {

out[i,j] = in[i-1,3] + ... + in[i+1,j];
}r
]
N-1
2 ) | |
1 e ] L]
i
1 0 1 2 3
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N-1
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3 ]
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Multidimensional Case: 2D Convolution

for(i=1; i<N-1; i++) {
for(j=1; j<N-1; j++) {

out[i,j] = in[i-1,3j] + ... + inl[i+1,j];
3}
]
o oo o o Same process with initialization
pipelinel[i,j] = in[i+1,j];
o) O |4 oo (o] [e]
(o] o3 oe o] O
o] O |2 oo oe O
o) o1 oe (o] [e]
i
(o] oO—O0—O0—O0——>
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]
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Multidimensional Case: 2D Convolution

for(i=1; i<N-1; i++) {
for(j=1; j<N-1; j++) {

out[i,j] = in[i-1,3] + ... + in[i+1,j];
}}
J
o oo o o Same process with initialization
pipelinel[i,j] = in[i+1,j];
o) O |4 ] O O
Parametrized liveness!
(o] O3 oe O [el8)
[e] 0|2 oe OX oe
o) o1 oe o] oe
i
[¢] O——O0—O0—O0—
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Multidimensional Case: 2D Convolution

for(i=1; i<N-1; i++) {
for(j=1; j<N-1; j++) {

out[i,j] = in[i-1,3] + ... + in[i+1,j];
}r
]
6 oo o o Same process with initialization
pipeline[i,j] = in[i+1,j];
o) O |4 O (e} [e]
Parametrized liveness!
(o] o3 oe O oe
Solution:
o] o] (o] OX oe . P .
m o Cut with hyperplane ¢(i,j) = j
© op cdi pe ou @ Same initialization iterations for
0 ol o i each tile

@ Contract and scalarize
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Postprocessing: Optimized Code Generation

RO

0; R1=1;
for(i=2; i<=N;
RO =

i+=2) {
= R1 + RO;
if (i+1 <= N)

R1

result

= RO + R1; }

(N%2==17R1:R0) ;

L

| |
2 3 1 4

Corner case control executed each iteration!
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Postprocessing: Optimized Code Generation

RO=0; R1=1;
for(i=2; i<=N; i+=2) {
RO = R1 + RO;
if (i+1 <= N)
Rl = RO + R1; }
result = (N%2==17R1:R0);

x,ox, |

| |
2 3 1 4 5

Corner case control executed each iteration!

Solution: separate steady iterations i from corner cases
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Experimental Setup

Implemented: Scalarization 4+ mitigation, by hand: data
systolization preprocessing, slightly different scheme.

Benchmarks:

@ Polybench kernels: gemm, jacobi-1d, jacobi-2d, 2mm,
gesummy, symm, correlation, covariance.

@ 2D blur filter and fibonnacci

Baseline: g++ -03, v15.1.1

Machine: x86-64 AMD processor 8 cores, 16 %xmmi
vector /floating point registers.

Measures with: perforator profiling utility based on perf.
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Experimental Results
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Figure 1. Speedup of each kernels. Speedups on the Y-axis
are plotted over the input size N on the X-axis, scaled at 10%.
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Post-processing evaluation

2d-blur-filter gemm 2mm
Scalarized | Post-processed || Scalarized | Post-processed || Scalarized | Post-processed

cpu-cycles 712k 608k 32,7M 32,5M 87,5M 87,5M
instructions 3,2M 1,7M 117M 124M 424M 424M
branch-instructions 208k 22k 2,6M 2,6M 52,8M 53,4M
branch-misses 136 145 5,6k 5,6k 6,5k 7k
cache-references 200k 202k 2,3M 2,3M 5,9M 5,6M
cache-misses 26k 25k 360k 371k 1244k 948k
time-elapsed H 758us [ 507 us H 24,8ms [ 24,4ms H 63,5m [ 63,6ms
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Post-processing evaluation

2d-blur-filter gemm 2mm
Scalarized | Post-processed || Scalarized | Post-processed || Scalarized | Post-processed

cpu-cycles 712k 608k 32,7M 32,5M 87,5M 87,5M
instructions 3,2M 1,7M 117M 124M 424M 424M
branch-instructions 208k 22k 2,6M 2,6M 52,8M 53,4M
branch-misses 136 145 5,6k 5,6k 6,5k 7k
cache-references 200k 202k 2,3M 2,3M 5,9M 5,6M
cache-misses 26k 25k 360k 371k 1244k 948k

l time-elapsed H 758us [ 507 s H 24,8ms [ 24,4ms H 63,5m [ 63,6ms

o 2d-blur-filter: effective
@ gemm, 2mm: same

@ Never worse when separating
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Conclusion

Contributions:
@ Unified approach for scalarization and data systolization
@ Parametrized by an affine schedule and an array contraction
mapping
@ Composable with other polyhedral compilation passes

Perspectives:
@ Full automation of data systolization
@ Reduce further the code complexity

@ Interplay with other polyhedral compilation passes
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Questions ?
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for (i = 0; i < N - 1; i++) {
systo[2] = A[i+1];
if (i >= 1 && i <= N-2)
B[i] = 0.33333 * (systo[0] + systo[1l] +
systo [2]);
for(offset=0; offset<=1; offset++)
systo[offset] = systol[offset+1];
}

for (i = -1; i < N-1; i++) {
for (j = 0; j < N; j++) {
systo[12] = A[i+11[j];
if ( i>= 1 && i <= N-1 && j >= 1 && j <=
N-1)

B[il[j] = 0.2 =
(systo[0]+systo[5]+systo[6]+systo [7]
+systo [12]) ;

for(offset=0; offset<=11; offset++)
systo[offset] = systo[offset+1];
}
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