lr

Vg — . —
2R~ ] — - —
ENS DE LYON

New Insights on Scalar Promotion with the

Polyhedral Model

Alec Sadler, Nathan Chandanson, Hugo Thievenaz,
Christophe Alias

Inria & ENS Lyon

IMPACT 26, Krakéw

1/17



Scalar Promotion

Scalar Promotion turn arrays into a collection of scalar variables
Benefits:

e Enable back-end optimizations (vectorization, register alloc.)

@ Reduce memory traffic

int A H i
121: re[z] Lo int a = rand();

; int b = rand();
s T <4 i+ SRA in ;
or (int i=0; i 3; i++) —— int res = rand();

A[i]l = randQ);
for (int i=0; i < 3; i++)
res+= A[i];

res += a;
res += b;

2/17



Scalar Promotion

Scalar Promotion turn arrays into a collection of scalar variables

Benefits:

e Enable back-end optimizations (vectorization, register alloc.)

@ Reduce memory traffic

Challenges:

@ Few registers, large and multiple arrays:
1 memory aware scheduling + array liveness analysis

o Mitigate control complexity

int
int
for

for

A[3];

res = 0;

(int i=0; i < 3;
A[i]l = randQ);
(int i=0; i < 3;
res+= A[i];

i++)

i++)

SRA
—_

int
int
int
res
res

a = rand();

b = rand();
res = rand();
+= a;

+= b;

2/17



Case Study 1: 2D Blur Filter

J
for (j=0; j<N; j++) 4I> ° ce oe oe
for(i=0; i<N; i++) {
P: temp[i,j] = f(input,i); 3 ° ce oe oe
if (i>=2)
C: out [i,j] = 2 ° ce oe oe

temp[i,j] +
temp[i-1,j] + 16 o o e o
temp[i-2,3j];

} 0@—{0—\4—0—> i

3/17



Case Study 1: 2D Blur Filter

for(j=0; j<N; j++) t
for(i=0; 1<N; i++) { 40 (¢} oe oe oe
P: temp[i,j] = f(input,i);
if (i >=2) 30 ) [ ] ) @ [ )
C: out[i,j] =
temp [i , J ] + 2 ] oN ] [ ] °
temp[i-1,3j] +
temp[i-2,3j]; 1 ° m
} [ E—F——F—— oeo—00— i
0 1 3 4
@ Array liveness exposes 3-register scalarization
@ How to distribute the data among the registers? J

3/17



Case Study 2: 1D Convolution

for(i=1; i<N-1; i++) {
out[i] = in[i] + dim[i+1]; //S

}
T\N '
in . i
1 2 3 4
@ No direct scalar promotion J

4/17



Case Study 2: 1D Convolution

for(i=1; i<N-1; i++) {

out [i] = in[i] + in[i+1]; //S Data systolization
}
L in[i+1]
T\N i
in . i

1 2 3 4
@ No direct scalar promotion
@ How to expose data systolization? J

4/17



Related Work

Register tiling: scalar promotion bound to a loop tiling

@ Perfect loop nest, rectangular tiling: [Jimenez'02], with
different tile sizes [Domagala'16]

@ Non-perfect loop nests, affine tiling [Renganarayana’09]

5/17



Related Work

Register tiling: scalar promotion bound to a loop tiling

@ Perfect loop nest, rectangular tiling: [Jimenez'02], with
different tile sizes [Domagala'16]

@ Non-perfect loop nests, affine tiling [Renganarayana’09]

Data systolization:
@ Common hand optimization in hardware design
@ Automation on PPN [Verdoolaege'10] and DPN [Alias'21]

5/17



Contributions

Unified approach for scalar promotion and data systolization
Mitigation of code complexity
Composable with other polyhedral passes

Preliminary validation on Polybenchs

6/17



Source Program

*{Data Systolization}

E Scalarization }

Target Program

4[Control Mitigation}

@ Generic polyhedral scalarization algorithm

@ Preprocessing enabling data systolization

@ Postprocessing of polyhedral IR to mitigate the control

7/17



Contraction-Driven Scalarisation

f[0]=0; f[1]l=1;

for(i=2; i<=N; i++)
flil = f[i-1] + f£[i-2];

result = f[N];

Step 1: Array contraction of(i) = i mod 2 [Thievenaz'24|

8/17



Contraction-Driven Scalarisation

f[0%2]1=0; f[1%2]=1;
for(i=2; i<=N; i++)

fli%2] = £L0@GE-1)%2] + £[(i-2)%2];
result = f[N%2];

Step 1: Array contraction of(i) = i mod 2 [Thievenaz'24|

8/17



Contraction-Driven Scalarisation

f[0%2]1=0; f[1%2]=1;
for(i=2; i<=N; i++)

fli%2] = £L0@GE-1)%2] + £[(i-2)%2];
result = f[N%2];

Step 1: Array contraction of(i) = i mod 2 [Thievenaz'24|

Step 2: Loop unroll, factor 2

8/17



Contraction-Driven Scalarisation

£[0%2]1=0; f[1%2]=1;
for(i=2; i<=N; i+=2) {
fli%2] = fLGE-1)%2] + fL(E-2)%2];
if(i+1 <= N)
fLE+1)%2] = £[i%2] + £[(Ei-1)%2]; X
result = f[N%2];

Step 1: Array contraction of(i) = i mod 2 [Thievenaz'24|

Step 2: Loop unroll, factor 2

8/17



Contraction-Driven Scalarisation

f[0%2]1=0; f[1%2]=1;
for(i=2; i<=N; i+=2) {
fli%2] = f0GE-1D%2] + £0(1-2)%2];
if(i+1 <= N)
fLE+1)%2] = £[i%2] + £[(Ei-1)%2]; X
result = f[N%2];

Step 1: Array contraction of(i) = i mod 2 [Thievenaz'24|
Step 2: Loop unroll, factor 2

Step 3: Scalarize using i mod 2 =10

8/17



Contraction-Driven Scalarisation

RO=0;

R1=1;
for(i=2; i<=N; i+=2) {
RO = R1 + RO;
if (i+1 <= N)
Rl = RO + R1; }
result

(N%2==17?R1:R0) ;

Step 1: Array contraction of(i) = i mod 2 [Thievenaz'24|

Step 2: Loop unroll, factor 2

Step 3: Scalarize using i mod 2 =10

8/17



Challenges

@ Multiple arrays with differents mappings. How to unroll?

for(i=1; i<=N; i++) {
for(j=1; j<=N; j++) {
ATi%2,3%3] = B[2i+j%3]

9/17



Challenges

@ Multiple arrays with differents mappings. How to unroll?

for(i=1; i<=N; i++) {
for(j=1; j<=N; j++) {
ATi%2,3%3] = B[2i+j%3]

For each loop, collect the modulos and take the lcm:
i Loop i: 2,3 — lem(2, 3) = factor 6

9/17



Challenges

@ Multiple arrays with differents mappings. How to unroll?

for(i=1; i<=N; i++) {
for(j=1; j<=N; j++) {
ATi%2,3%3] = B[2i+j%3]

For each loop, collect the modulos and take the lcm:
i Loop i: 2,3 — lem(2, 3) = factor 6

@ Approach parametrized by an affine schedule
1= consider schedule dimensions instead of loops

9/17



Preprocessing: Data Systolization

for(i=1; i<=N; i++) {
out[i] = in[i] + in[i+1]; //S
}

Step 1: Expose the data pipelining

10/17



Preprocessing: Data Systolization

for(i=1-6;¢; i<=N+4;,; i++) {
pipeline[i+1] = in[i+1]; //P
if(1<i<N)
out[i] = pipeline[i] + pipeline[i+1]; //S

Step 1: Expose the data pipelining

10/17



Preprocessing: Data Systolization

for(i=1-6;¢; i<=N+4;,; i++) {
pipeline[i+1] = in[i+1]; //P
if(1<i<N)
out[i] = pipeline[i] + pipeline[i+1]; //S

Step 1: Expose the data pipelining

Step 2: Set initialization iterations from array dataflow analysis

10/17



Preprocessing: Data Systolization

for(i=0; i<=N; i++) {
pipeline[i+1] = in[i+1]; //P
if(1<i<N)
out[i] = pipeline[i] + pipeline[i+1]; //S

Step 1: Expose the data pipelining

Step 2: Set initialization iterations from array dataflow analysis

10/17



Preprocessing: Data Systolization

for(i=0; i<=N; i++) {
pipeline[i+1] = in[i+1]; //P
if(1<i<N)
out[i] = pipeline[i] + pipeline[i+1]; //S

Step 1: Expose the data pipelining
Step 2: Set initialization iterations from array dataflow analysis
Step 3: Contract pipeline array: opjpefine(i) = i mod 2

Step 4: Apply our scalarization procedure

10/17



Preprocessing: Data Systolization

for(i=0; i<=N; i+=2) {
Rl = in[i+1];
if(i >= 1)
out[i] = RO + R1;
RO = in[i+2];
if(i+1 >= 1)
out[i+1] = R1 + RO;

Step 1: Expose the data pipelining
Step 2: Set initialization iterations from array dataflow analysis
Step 3: Contract pipeline array: opjpefine(i) = i mod 2

Step 4: Apply our scalarization procedure

10/17



Multidimensional Case: 2D Convolution

for(i=1; i<N-1; i++) {
for(j=1; j<N-1; j++) {

out[i,j] = in[i-1,3] + ... + in[i+1,j];

}r

]

N-1

B
3 ° |

2 ) | |
1 (<)
i
1 0 1 2 3

11/17



Multidimensional Case: 2D Convolution

for(i=1; i<N-1; i++) {
for(j=1; j<N-1; j++) {

out[i,j] = in[i-1,3] + ... + in[i+1,j];
}r
]
N-1
2 ) | |
1 e ] L]
i
1 0 1 2 3

11/17



Multidimensional Case: 2D Convolution

for(i=1; i<N-1; i++) {
for(j=1; j<N-1; j++) {

out[i,j] = in[i-1,3] + ... + in[i+1,j];
}r
]
N-1
B
3 ]
2 ) | |
1 e ] L]
i
1 0 1 2 3

11/17



Multidimensional Case: 2D Convolution

for(i=1; i<N-1; i++) {
for(j=1; j<N-1; j++) {

out[i,j] = in[i-1,3j] + ... + inl[i+1,j];
3}
]
o oo o o Same process with initialization
pipelinel[i,j] = in[i+1,j];
o) O |4 oo (o] [e]
(o] o3 oe o] O
o] O |2 oo oe O
o) o1 oe (o] [e]
i
(o] oO—O0—O0—O0——>

11/17



Multidimensional Case: 2D Convolution

for(i=1; i<N-1; i++) {
for(j=1; j<N-1; j++) {

out[i,j] = in[i-1,3] + ... + in[i+1,j];
}
]
6 oo o o Same process with initialization
pipelinel[i,j] = in[i+1,j];
o) O |4 oo (o] [e]
(o] o3 oe o] oe
o] O |2 oo OX oe
o) o1 oe (o] (el }
i
(o] oO—O0—O0—O0——>
1 0 1 2 3

11/17



Multidimensional Case: 2D Convolution

for(i=1; i<N-1; i++) {
for(j=1; j<N-1; j++) {

out[i,j] = in[i-1,3] + ... + in[i+1,j];
}}
J
o oo o o Same process with initialization
pipelinel[i,j] = in[i+1,j];
o) O |4 ] O O
Parametrized liveness!
(o] O3 oe O [el8)
[e] 0|2 oe OX oe
o) o1 oe o] oe
i
[¢] O——O0—O0—O0—

11/17



Multidimensional Case: 2D Convolution

for(i=1; i<N-1; i++) {
for(j=1; j<N-1; j++) {

out[i,j] = in[i-1,3] + ... + in[i+1,j];
}r
]
6 oo o o Same process with initialization
pipeline[i,j] = in[i+1,j];
o) O |4 O (e} [e]
Parametrized liveness!
(o] o3 oe O oe
Solution:
o] o] (o] OX oe . P .
m o Cut with hyperplane ¢(i,j) = j
© op cdi pe ou @ Same initialization iterations for
0 ol o i each tile

@ Contract and scalarize

11/17



Postprocessing: Optimized Code Generation

RO

0; R1=1;
for(i=2; i<=N;
RO =

i+=2) {
= R1 + RO;
if (i+1 <= N)

R1

result

= RO + R1; }

(N%2==17R1:R0) ;

L

| |
2 3 1 4

Corner case control executed each iteration!

12/17



Postprocessing: Optimized Code Generation

RO=0; R1=1;
for(i=2; i<=N; i+=2) {
RO = R1 + RO;
if (i+1 <= N)
Rl = RO + R1; }
result = (N%2==17R1:R0);

x,ox, |

| |
2 3 1 4 5

Corner case control executed each iteration!

Solution: separate steady iterations i from corner cases

12/17



Experimental Setup

Implemented: Scalarization 4+ mitigation, by hand: data
systolization preprocessing, slightly different scheme.

Benchmarks:

@ Polybench kernels: gemm, jacobi-1d, jacobi-2d, 2mm,
gesummy, symm, correlation, covariance.

@ 2D blur filter and fibonnacci

Baseline: g++ -03, v15.1.1

Machine: x86-64 AMD processor 8 cores, 16 %xmmi
vector /floating point registers.

Measures with: perforator profiling utility based on perf.

13/17



Experimental Results

T )

s
4| AT

A

| 5 S

. 2 =

oI LoTE ¢ I
0 05 1 0 05 1 0 50 100

4

3

2

jaat . @ correlation, covariance:
0 0.20.40.6 0 0.2 04
(@ gemm  (¢) Jacobi-1d  (f) Jacobi-2d scalarization of

I EREE i non-significant part

1k 0.95 [% P

osE L | 09k . @ gesumyv, symm, atax:

0 0.20.40.60.8 0 0.5 1 : 0 0.5 1 . .
scalarized with -O3

(g) 2mm  (h) correlation (i) covariance

2 B T LT @ 2mm: code complexity
0s L7 R S AN

’ '\\\\g:ziwww‘\io-gfﬂ\\\’

01234 00.20.40.60.8 0051152

(j) gesummv (k) symm (1) atax

Figure 1. Speedup of each kernels. Speedups on the Y-axis
are plotted over the input size N on the X-axis, scaled at 10%.

14 /17



Post-processing evaluation

2d-blur-filter gemm 2mm
Scalarized | Post-processed || Scalarized | Post-processed || Scalarized | Post-processed

cpu-cycles 712k 608k 32,7M 32,5M 87,5M 87,5M
instructions 3,2M 1,7M 117M 124M 424M 424M
branch-instructions 208k 22k 2,6M 2,6M 52,8M 53,4M
branch-misses 136 145 5,6k 5,6k 6,5k 7k
cache-references 200k 202k 2,3M 2,3M 5,9M 5,6M
cache-misses 26k 25k 360k 371k 1244k 948k
time-elapsed H 758us [ 507 us H 24,8ms [ 24,4ms H 63,5m [ 63,6ms

15/17



Post-processing evaluation

2d-blur-filter gemm 2mm
Scalarized | Post-processed || Scalarized | Post-processed || Scalarized | Post-processed

cpu-cycles 712k 608k 32,7M 32,5M 87,5M 87,5M
instructions 3,2M 1,7M 117M 124M 424M 424M
branch-instructions 208k 22k 2,6M 2,6M 52,8M 53,4M
branch-misses 136 145 5,6k 5,6k 6,5k 7k
cache-references 200k 202k 2,3M 2,3M 5,9M 5,6M
cache-misses 26k 25k 360k 371k 1244k 948k

l time-elapsed H 758us [ 507 s H 24,8ms [ 24,4ms H 63,5m [ 63,6ms

o 2d-blur-filter: effective

15/17



Post-processing evaluation

2d-blur-filter gemm 2mm
Scalarized | Post-processed || Scalarized | Post-processed || Scalarized | Post-processed

cpu-cycles 712k 608k 32,7M 32,5M 87,5M 87,5M
instructions 3,2M 1,7M 117M 124M 424M 424M
branch-instructions 208k 22k 2,6M 2,6M 52,8M 53,4M
branch-misses 136 145 5,6k 5,6k 6,5k 7k
cache-references 200k 202k 2,3M 2,3M 5,9M 5,6M
cache-misses 26k 25k 360k 371k 1244k 948k

l time-elapsed H 758us [ 507 s H 24,8ms [ 24,4ms H 63,5m [ 63,6ms

o 2d-blur-filter: effective

@ gemm, 2mm: same

15/17



Post-processing evaluation

2d-blur-filter gemm 2mm
Scalarized | Post-processed || Scalarized | Post-processed || Scalarized | Post-processed

cpu-cycles 712k 608k 32,7M 32,5M 87,5M 87,5M
instructions 3,2M 1,7M 117M 124M 424M 424M
branch-instructions 208k 22k 2,6M 2,6M 52,8M 53,4M
branch-misses 136 145 5,6k 5,6k 6,5k 7k
cache-references 200k 202k 2,3M 2,3M 5,9M 5,6M
cache-misses 26k 25k 360k 371k 1244k 948k

l time-elapsed H 758us [ 507 s H 24,8ms [ 24,4ms H 63,5m [ 63,6ms

o 2d-blur-filter: effective
@ gemm, 2mm: same

@ Never worse when separating

15/17



Conclusion

Contributions:
@ Unified approach for scalarization and data systolization
@ Parametrized by an affine schedule and an array contraction
mapping
@ Composable with other polyhedral compilation passes

Perspectives:
@ Full automation of data systolization
@ Reduce further the code complexity

@ Interplay with other polyhedral compilation passes

16/17



Questions ?

17/17



for (i = 0; i < N - 1; i++) {
systo[2] = A[i+1];
if (i >= 1 && i <= N-2)
B[i] = 0.33333 * (systo[0] + systo[1l] +
systo [2]);
for(offset=0; offset<=1; offset++)
systo[offset] = systol[offset+1];
}

for (i = -1; i < N-1; i++) {
for (j = 0; j < N; j++) {
systo[12] = A[i+11[j];
if ( i>= 1 && i <= N-1 && j >= 1 && j <=
N-1)

B[il[j] = 0.2 =
(systo[0]+systo[5]+systo[6]+systo [7]
+systo [12]) ;

for(offset=0; offset<=11; offset++)
systo[offset] = systo[offset+1];
}

17/17



	Introduction
	Contraction-Driven Scalarisation
	Preprocessing: Data Systolization

