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Scalar Promotion

Scalar Promotion turn arrays into a collection of scalar variables

Benefits:

Enable back-end optimizations (vectorization, register alloc.)

Reduce memory traffic

Challenges:

Few registers, large and multiple arrays:
☞ memory aware scheduling + array liveness analysis

Mitigate control complexity

int A[3];

int res = 0;

for (int i=0; i < 3; i++)

A[i] = rand();

for (int i=0; i < 3; i++)

res+= A[i];

int a = rand();

int b = rand();

int res = rand();

res += a;

res += b;

SRA
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Case Study 1: 2D Blur Filter

for(j=0; j<N; j++)

for(i=0; i<N; i++) {

P: temp[i,j] = f(input ,i);

if(i>=2)

C: out[i,j] =

temp[i,j] +

temp[i-1,j] +

temp[i-2,j];
} i

j

0
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2

3

4

0 1 2 3 4

Array liveness exposes 3-register scalarization

How to distribute the data among the registers?
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Case Study 2: 1D Convolution

for(i=1; i<N-1; i++) {

out[i] = in[i] + in[i+1]; //S

}

in[i+1]

Data systolization

in i

S i

1 2 3 4

No direct scalar promotion

How to expose data systolization?
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Related Work

Register tiling: scalar promotion bound to a loop tiling

Perfect loop nest, rectangular tiling: [Jimenez’02], with
different tile sizes [Domagala’16]

Non-perfect loop nests, affine tiling [Renganarayana’09]

Data systolization:

Common hand optimization in hardware design

Automation on PPN [Verdoolaege’10] and DPN [Alias’21]
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Contributions

Unified approach for scalar promotion and data systolization

Mitigation of code complexity

Composable with other polyhedral passes

Preliminary validation on Polybenchs
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Our Approach

Source Program Data Systolization

Scalarization

Control MitigationTarget Program

Generic polyhedral scalarization algorithm

Preprocessing enabling data systolization

Postprocessing of polyhedral IR to mitigate the control

7 / 17



Contraction-Driven Scalarisation

f[0]=0; f[1]=1;

for(i=2; i<=N; i++)

f[i] = f[i-1] + f[i-2];

result = f[N];

Step 1: Array contraction σf (i) = i mod 2 [Thievenaz’24]

Step 2: Loop unroll, factor 2

Step 3: Scalarize using i mod 2 = 0

8 / 17
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Contraction-Driven Scalarisation

f[0%2]=0; f[1%2]=1;

for(i=2; i<=N; i+=2) {
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Contraction-Driven Scalarisation

R0=0; R1=1;

for(i=2; i<=N; i+=2) {

R0 = R1 + R0;

if(i+1 <= N)

R1 = R0 + R1; }

result = (N%2==1?R1:R0);

Step 1: Array contraction σf (i) = i mod 2 [Thievenaz’24]

Step 2: Loop unroll, factor 2

Step 3: Scalarize using i mod 2 = 0

8 / 17



Challenges

Multiple arrays with differents mappings. How to unroll?

for(i=1; i<=N; i++) {

for(j=1; j<=N; j++) {

A[i%2,j%3] = B[2i+j%3]

For each loop, collect the modulos and take the lcm:
☞ Loop i: 2,3 → lcm(2, 3) = factor 6

Approach parametrized by an affine schedule
☞ consider schedule dimensions instead of loops
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Preprocessing: Data Systolization

for(i=1; i<=N; i++) {

out[i] = in[i] + in[i+1]; //S

}

Step 1: Expose the data pipelining

Step 2: Set initialization iterations from array dataflow analysis

Step 3: Contract pipeline array: σpipeline(i) = i mod 2

Step 4: Apply our scalarization procedure
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Preprocessing: Data Systolization

for(i=0; i<=N; i+=2) {

R1 = in[i+1];

if(i >= 1)

out[i] = R0 + R1;

R0 = in[i+2];

if(i+1 >= 1)

out[i+1] = R1 + R0;

}

Step 1: Expose the data pipelining

Step 2: Set initialization iterations from array dataflow analysis

Step 3: Contract pipeline array: σpipeline(i) = i mod 2
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Multidimensional Case: 2D Convolution

for(i=1; i<N-1; i++) {

for(j=1; j<N-1; j++) {

out[i,j] = in[i-1,j] + ... + in[i+1,j];

}}
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N-1

-1 0 1 2 3
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Same process with initialization
pipeline[i,j] = in[i+1,j];

Parametrized liveness!

Solution:

Cut with hyperplane ϕ(i , j) = j

Same initialization iterations for
each tile

Contract and scalarize
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Postprocessing: Optimized Code Generation

R0=0; R1=1;

for(i=2; i<=N; i+=2) {

R0 = R1 + R0;

if(i+1 <= N)

R1 = R0 + R1; }

result = (N%2==1?R1:R0);

i
2 3 4 5 6

Corner case control executed each iteration!

Solution: separate steady iterations i from corner cases
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Experimental Setup

Implemented: Scalarization + mitigation, by hand: data
systolization preprocessing, slightly different scheme.

Benchmarks:

Polybench kernels: gemm, jacobi-1d, jacobi-2d, 2mm,
gesummv, symm, correlation, covariance.

2D blur filter and fibonnacci

Baseline: g++ -O3, v15.1.1

Machine: x86-64 AMD processor 8 cores, 16 %xmmi

vector/floating point registers.

Measures with: perforator profiling utility based on perf.
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Experimental Results
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Figure 1. Speedup of each kernels. Speedups on the Y-axis
are plotted over the input size N on the X-axis, scaled at 103.

correlation, covariance:
scalarization of
non-significant part

gesumv, symm, atax:
scalarized with -O3

2mm: code complexity
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Post-processing evaluation

2d-blur-filter gemm 2mm

Scalarized Post-processed Scalarized Post-processed Scalarized Post-processed

cpu-cycles 712k 608k 32,7M 32,5M 87,5M 87,5M

instructions 3,2M 1,7M 117M 124M 424M 424M

branch-instructions 208k 22k 2,6M 2,6M 52,8M 53,4M

branch-misses 136 145 5,6k 5,6k 6,5k 7k

cache-references 200k 202k 2,3M 2,3M 5,9M 5,6M

cache-misses 26k 25k 360k 371k 1244k 948k

time-elapsed 758µs 507µs 24,8ms 24,4ms 63,5m 63,6ms

2d-blur-filter: effective

gemm, 2mm: same

Never worse when separating
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Conclusion

Contributions:

Unified approach for scalarization and data systolization

Parametrized by an affine schedule and an array contraction
mapping

Composable with other polyhedral compilation passes

Perspectives:

Full automation of data systolization

Reduce further the code complexity

Interplay with other polyhedral compilation passes
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Questions ?
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for (i = 0; i < N - 1; i++) {

systo [2] = A[i+1];

if ( i >= 1 && i <= N-2)

B[i] = 0.33333 * (systo [0] + systo [1] +

systo [2]);

for(offset=0; offset<=1; offset++)

systo[offset] = systo[offset+1];

}

for (i = -1; i < N-1; i++) {

for (j = 0; j < N; j++) {

systo [12] = A[i+1][j];

if ( i>= 1 && i <= N-1 && j >= 1 && j <=

N-1)

B[i][j] = 0.2 *

(systo [0]+ systo [5]+ systo [6]+ systo [7]

+systo [12]);

for(offset=0; offset<=11; offset++)

systo[offset] = systo[offset+1];

}

}
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