
New Insights on Scalar Promotion with the
Polyhedral Model

Alec Sadler, Nathan Chandanson, Hugo Thievenaz,
Christophe Alias

Inria & ENS Lyon

IMPACT’26, Kraków

1 / 17

Scalar Promotion

Scalar Promotion turn arrays into a collection of scalar variables

Benefits:

Enable back-end optimizations (vectorization, register alloc.)

Reduce memory traffic

Challenges:

Few registers, large and multiple arrays:
☞ memory aware scheduling + array liveness analysis

Mitigate control complexity

int A[3];

int res = 0;

for (int i=0; i < 3; i++)

A[i] = rand();

for (int i=0; i < 3; i++)

res+= A[i];

int a = rand();

int b = rand();

int res = rand();

res += a;

res += b;

SRA

2 / 17

Scalar Promotion

Scalar Promotion turn arrays into a collection of scalar variables

Benefits:

Enable back-end optimizations (vectorization, register alloc.)

Reduce memory traffic

Challenges:

Few registers, large and multiple arrays:
☞ memory aware scheduling + array liveness analysis

Mitigate control complexity

int A[3];

int res = 0;

for (int i=0; i < 3; i++)

A[i] = rand();

for (int i=0; i < 3; i++)

res+= A[i];

int a = rand();

int b = rand();

int res = rand();

res += a;

res += b;

SRA

2 / 17

Case Study 1: 2D Blur Filter

for(j=0; j<N; j++)

for(i=0; i<N; i++) {

P: temp[i,j] = f(input ,i);

if(i>=2)

C: out[i,j] =

temp[i,j] +

temp[i-1,j] +

temp[i-2,j];
} i

j

0

1

2

3

4

0 1 2 3 4

Array liveness exposes 3-register scalarization

How to distribute the data among the registers?

3 / 17

Case Study 1: 2D Blur Filter

for(j=0; j<N; j++)

for(i=0; i<N; i++) {

P: temp[i,j] = f(input ,i);

if(i>=2)

C: out[i,j] =

temp[i,j] +

temp[i-1,j] +

temp[i-2,j];
}

i

j

0

1

2

3

4

0 1 2 3 4

Array liveness exposes 3-register scalarization

How to distribute the data among the registers?

3 / 17

Case Study 2: 1D Convolution

for(i=1; i<N-1; i++) {

out[i] = in[i] + in[i+1]; //S

}

in[i+1]

Data systolization

in i

S i

1 2 3 4

No direct scalar promotion

How to expose data systolization?

4 / 17

Case Study 2: 1D Convolution

for(i=1; i<N-1; i++) {

out[i] = in[i] + in[i+1]; //S

}

in[i+1]

Data systolization

in i

S i

1 2 3 4

No direct scalar promotion

How to expose data systolization?

4 / 17

Related Work

Register tiling: scalar promotion bound to a loop tiling

Perfect loop nest, rectangular tiling: [Jimenez’02], with
different tile sizes [Domagala’16]

Non-perfect loop nests, affine tiling [Renganarayana’09]

Data systolization:

Common hand optimization in hardware design

Automation on PPN [Verdoolaege’10] and DPN [Alias’21]

5 / 17

Related Work

Register tiling: scalar promotion bound to a loop tiling

Perfect loop nest, rectangular tiling: [Jimenez’02], with
different tile sizes [Domagala’16]

Non-perfect loop nests, affine tiling [Renganarayana’09]

Data systolization:

Common hand optimization in hardware design

Automation on PPN [Verdoolaege’10] and DPN [Alias’21]

5 / 17

Contributions

Unified approach for scalar promotion and data systolization

Mitigation of code complexity

Composable with other polyhedral passes

Preliminary validation on Polybenchs

6 / 17

Our Approach

Source Program Data Systolization

Scalarization

Control MitigationTarget Program

Generic polyhedral scalarization algorithm

Preprocessing enabling data systolization

Postprocessing of polyhedral IR to mitigate the control

7 / 17

Contraction-Driven Scalarisation

f[0]=0; f[1]=1;

for(i=2; i<=N; i++)

f[i] = f[i-1] + f[i-2];

result = f[N];

Step 1: Array contraction σf (i) = i mod 2 [Thievenaz’24]

Step 2: Loop unroll, factor 2

Step 3: Scalarize using i mod 2 = 0

8 / 17

Contraction-Driven Scalarisation

f[0%2]=0; f[1%2]=1;

for(i=2; i<=N; i++)

f[i%2] = f[(i-1)%2] + f[(i-2)%2];

result = f[N%2];

Step 1: Array contraction σf (i) = i mod 2 [Thievenaz’24]

Step 2: Loop unroll, factor 2

Step 3: Scalarize using i mod 2 = 0

8 / 17

Contraction-Driven Scalarisation

f[0%2]=0; f[1%2]=1;

for(i=2; i<=N; i++)

f[i%2] = f[(i-1)%2] + f[(i-2)%2];

result = f[N%2];

Step 1: Array contraction σf (i) = i mod 2 [Thievenaz’24]

Step 2: Loop unroll, factor 2

Step 3: Scalarize using i mod 2 = 0

8 / 17

Contraction-Driven Scalarisation

f[0%2]=0; f[1%2]=1;

for(i=2; i<=N; i+=2) {

f[i%2] = f[(i-1)%2] + f[(i-2)%2];

if(i+1 <= N)

f[(i+1)%2] = f[i%2] + f[(i-1)%2]; }

result = f[N%2];

Step 1: Array contraction σf (i) = i mod 2 [Thievenaz’24]

Step 2: Loop unroll, factor 2

Step 3: Scalarize using i mod 2 = 0

8 / 17

Contraction-Driven Scalarisation

f[0%2]=0; f[1%2]=1;

for(i=2; i<=N; i+=2) {

f[i%2] = f[(i-1)%2] + f[(i-2)%2];

if(i+1 <= N)

f[(i+1)%2] = f[i%2] + f[(i-1)%2]; }

result = f[N%2];

Step 1: Array contraction σf (i) = i mod 2 [Thievenaz’24]

Step 2: Loop unroll, factor 2

Step 3: Scalarize using i mod 2 = 0

8 / 17

Contraction-Driven Scalarisation

R0=0; R1=1;

for(i=2; i<=N; i+=2) {

R0 = R1 + R0;

if(i+1 <= N)

R1 = R0 + R1; }

result = (N%2==1?R1:R0);

Step 1: Array contraction σf (i) = i mod 2 [Thievenaz’24]

Step 2: Loop unroll, factor 2

Step 3: Scalarize using i mod 2 = 0

8 / 17

Challenges

Multiple arrays with differents mappings. How to unroll?

for(i=1; i<=N; i++) {

for(j=1; j<=N; j++) {

A[i%2,j%3] = B[2i+j%3]

For each loop, collect the modulos and take the lcm:
☞ Loop i: 2,3 → lcm(2, 3) = factor 6

Approach parametrized by an affine schedule
☞ consider schedule dimensions instead of loops

9 / 17

Challenges

Multiple arrays with differents mappings. How to unroll?

for(i=1; i<=N; i++) {

for(j=1; j<=N; j++) {

A[i%2,j%3] = B[2i+j%3]

For each loop, collect the modulos and take the lcm:
☞ Loop i: 2,3 → lcm(2, 3) = factor 6

Approach parametrized by an affine schedule
☞ consider schedule dimensions instead of loops

9 / 17

Challenges

Multiple arrays with differents mappings. How to unroll?

for(i=1; i<=N; i++) {

for(j=1; j<=N; j++) {

A[i%2,j%3] = B[2i+j%3]

For each loop, collect the modulos and take the lcm:
☞ Loop i: 2,3 → lcm(2, 3) = factor 6

Approach parametrized by an affine schedule
☞ consider schedule dimensions instead of loops

9 / 17

Preprocessing: Data Systolization

for(i=1; i<=N; i++) {

out[i] = in[i] + in[i+1]; //S

}

Step 1: Expose the data pipelining

Step 2: Set initialization iterations from array dataflow analysis

Step 3: Contract pipeline array: σpipeline(i) = i mod 2

Step 4: Apply our scalarization procedure

10 / 17

Preprocessing: Data Systolization

for(i=1-δi,ℓ; i<=N+δi,u; i++) {

pipeline[i+1] = in[i+1]; //P

if(1 ≤ i ≤ N)

out[i] = pipeline[i] + pipeline[i+1]; //S

}

Step 1: Expose the data pipelining

Step 2: Set initialization iterations from array dataflow analysis

Step 3: Contract pipeline array: σpipeline(i) = i mod 2

Step 4: Apply our scalarization procedure

10 / 17

Preprocessing: Data Systolization

for(i=1-δi,ℓ; i<=N+δi,u; i++) {

pipeline[i+1] = in[i+1]; //P

if(1 ≤ i ≤ N)

out[i] = pipeline[i] + pipeline[i+1]; //S

}

Step 1: Expose the data pipelining

Step 2: Set initialization iterations from array dataflow analysis

Step 3: Contract pipeline array: σpipeline(i) = i mod 2

Step 4: Apply our scalarization procedure

10 / 17

Preprocessing: Data Systolization

for(i=0; i<=N; i++) {

pipeline[i+1] = in[i+1]; //P

if(1 ≤ i ≤ N)

out[i] = pipeline[i] + pipeline[i+1]; //S

}

Step 1: Expose the data pipelining

Step 2: Set initialization iterations from array dataflow analysis

Step 3: Contract pipeline array: σpipeline(i) = i mod 2

Step 4: Apply our scalarization procedure

10 / 17

Preprocessing: Data Systolization

for(i=0; i<=N; i++) {

pipeline[i+1] = in[i+1]; //P

if(1 ≤ i ≤ N)

out[i] = pipeline[i] + pipeline[i+1]; //S

}

Step 1: Expose the data pipelining

Step 2: Set initialization iterations from array dataflow analysis

Step 3: Contract pipeline array: σpipeline(i) = i mod 2

Step 4: Apply our scalarization procedure

10 / 17

Preprocessing: Data Systolization

for(i=0; i<=N; i+=2) {

R1 = in[i+1];

if(i >= 1)

out[i] = R0 + R1;

R0 = in[i+2];

if(i+1 >= 1)

out[i+1] = R1 + R0;

}

Step 1: Expose the data pipelining

Step 2: Set initialization iterations from array dataflow analysis

Step 3: Contract pipeline array: σpipeline(i) = i mod 2

Step 4: Apply our scalarization procedure

10 / 17

Multidimensional Case: 2D Convolution

for(i=1; i<N-1; i++) {

for(j=1; j<N-1; j++) {

out[i,j] = in[i-1,j] + ... + in[i+1,j];

}}

i

j

1

2

3

4

N-1

-1 0 1 2 3

11 / 17

Multidimensional Case: 2D Convolution

for(i=1; i<N-1; i++) {

for(j=1; j<N-1; j++) {

out[i,j] = in[i-1,j] + ... + in[i+1,j];

}}

i

j

1

2

3

4

N-1

-1 0 1 2 3

11 / 17

Multidimensional Case: 2D Convolution

for(i=1; i<N-1; i++) {

for(j=1; j<N-1; j++) {

out[i,j] = in[i-1,j] + ... + in[i+1,j];

}}

i

j

1

2

3

4

N-1

-1 0 1 2 3

11 / 17

Multidimensional Case: 2D Convolution

for(i=1; i<N-1; i++) {

for(j=1; j<N-1; j++) {

out[i,j] = in[i-1,j] + ... + in[i+1,j];

}}

i

j

1

2

3

4

N-1

-1 0 1 2 3

Same process with initialization
pipeline[i,j] = in[i+1,j];

Parametrized liveness!

Solution:

Cut with hyperplane ϕ(i , j) = j

Same initialization iterations for
each tile

Contract and scalarize

11 / 17

Multidimensional Case: 2D Convolution

for(i=1; i<N-1; i++) {

for(j=1; j<N-1; j++) {

out[i,j] = in[i-1,j] + ... + in[i+1,j];

}}

i

j

1

2

3

4

N-1

-1 0 1 2 3

x

Same process with initialization
pipeline[i,j] = in[i+1,j];

Parametrized liveness!

Solution:

Cut with hyperplane ϕ(i , j) = j

Same initialization iterations for
each tile

Contract and scalarize

11 / 17

Multidimensional Case: 2D Convolution

for(i=1; i<N-1; i++) {

for(j=1; j<N-1; j++) {

out[i,j] = in[i-1,j] + ... + in[i+1,j];

}}

i

j

1

2

3

4

N-1

-1 0 1 2 3

x

Same process with initialization
pipeline[i,j] = in[i+1,j];

Parametrized liveness!

Solution:

Cut with hyperplane ϕ(i , j) = j

Same initialization iterations for
each tile

Contract and scalarize

11 / 17

Multidimensional Case: 2D Convolution

for(i=1; i<N-1; i++) {

for(j=1; j<N-1; j++) {

out[i,j] = in[i-1,j] + ... + in[i+1,j];

}}

i

j

1

2

3

4

N-1

-1 0 1 2 3

x

Same process with initialization
pipeline[i,j] = in[i+1,j];

Parametrized liveness!

Solution:

Cut with hyperplane ϕ(i , j) = j

Same initialization iterations for
each tile

Contract and scalarize

11 / 17

Postprocessing: Optimized Code Generation

R0=0; R1=1;

for(i=2; i<=N; i+=2) {

R0 = R1 + R0;

if(i+1 <= N)

R1 = R0 + R1; }

result = (N%2==1?R1:R0);

i
2 3 4 5 6

Corner case control executed each iteration!

Solution: separate steady iterations i from corner cases

12 / 17

Postprocessing: Optimized Code Generation

R0=0; R1=1;

for(i=2; i<=N; i+=2) {

R0 = R1 + R0;

if(i+1 <= N)

R1 = R0 + R1; }

result = (N%2==1?R1:R0);

i
2 3 4 5 6

Corner case control executed each iteration!

Solution: separate steady iterations i from corner cases

12 / 17

Experimental Setup

Implemented: Scalarization + mitigation, by hand: data
systolization preprocessing, slightly different scheme.

Benchmarks:

Polybench kernels: gemm, jacobi-1d, jacobi-2d, 2mm,
gesummv, symm, correlation, covariance.

2D blur filter and fibonnacci

Baseline: g++ -O3, v15.1.1

Machine: x86-64 AMD processor 8 cores, 16 %xmmi

vector/floating point registers.

Measures with: perforator profiling utility based on perf.

13 / 17

Experimental Results

0 0.5 1
0
5
10
15

(a) 2d-blur

0 0.5 1
1
2
3

(b) 2d-blur tiled

0 50 100

2

4

(c) Fibonacci

0 0.2 0.4 0.6
1
2
3
4

(d) gemm

0 2 4 6 8

1

1.2

(e) Jacobi-1d

0 0.2 0.4
0
10
20
30

(f) Jacobi-2d

0 0.20.40.60.8
0.5

1

1.5

(g) 2mm

0 0.5 1
0.9
0.95

1
1.05

(h) correlation

0 0.5 1
0.9
1

1.1
1.2

(i) covariance

0 1 2 3 4

0.8
1

1.2

(j) gesummv

0 0.20.40.60.8
0.8
0.9
1

1.1
1.2

(k) symm

0 0.5 1 1.5 2
0.9
1

1.1

(l) atax

Figure 1. Speedup of each kernels. Speedups on the Y-axis
are plotted over the input size N on the X-axis, scaled at 103.

correlation, covariance:
scalarization of
non-significant part

gesumv, symm, atax:
scalarized with -O3

2mm: code complexity

14 / 17

Post-processing evaluation

2d-blur-filter gemm 2mm

Scalarized Post-processed Scalarized Post-processed Scalarized Post-processed

cpu-cycles 712k 608k 32,7M 32,5M 87,5M 87,5M

instructions 3,2M 1,7M 117M 124M 424M 424M

branch-instructions 208k 22k 2,6M 2,6M 52,8M 53,4M

branch-misses 136 145 5,6k 5,6k 6,5k 7k

cache-references 200k 202k 2,3M 2,3M 5,9M 5,6M

cache-misses 26k 25k 360k 371k 1244k 948k

time-elapsed 758µs 507µs 24,8ms 24,4ms 63,5m 63,6ms

2d-blur-filter: effective

gemm, 2mm: same

Never worse when separating

15 / 17

Post-processing evaluation

2d-blur-filter gemm 2mm

Scalarized Post-processed Scalarized Post-processed Scalarized Post-processed

cpu-cycles 712k 608k 32,7M 32,5M 87,5M 87,5M

instructions 3,2M 1,7M 117M 124M 424M 424M

branch-instructions 208k 22k 2,6M 2,6M 52,8M 53,4M

branch-misses 136 145 5,6k 5,6k 6,5k 7k

cache-references 200k 202k 2,3M 2,3M 5,9M 5,6M

cache-misses 26k 25k 360k 371k 1244k 948k

time-elapsed 758µs 507µs 24,8ms 24,4ms 63,5m 63,6ms

2d-blur-filter: effective

gemm, 2mm: same

Never worse when separating

15 / 17

Post-processing evaluation

2d-blur-filter gemm 2mm

Scalarized Post-processed Scalarized Post-processed Scalarized Post-processed

cpu-cycles 712k 608k 32,7M 32,5M 87,5M 87,5M

instructions 3,2M 1,7M 117M 124M 424M 424M

branch-instructions 208k 22k 2,6M 2,6M 52,8M 53,4M

branch-misses 136 145 5,6k 5,6k 6,5k 7k

cache-references 200k 202k 2,3M 2,3M 5,9M 5,6M

cache-misses 26k 25k 360k 371k 1244k 948k

time-elapsed 758µs 507µs 24,8ms 24,4ms 63,5m 63,6ms

2d-blur-filter: effective

gemm, 2mm: same

Never worse when separating

15 / 17

Post-processing evaluation

2d-blur-filter gemm 2mm

Scalarized Post-processed Scalarized Post-processed Scalarized Post-processed

cpu-cycles 712k 608k 32,7M 32,5M 87,5M 87,5M

instructions 3,2M 1,7M 117M 124M 424M 424M

branch-instructions 208k 22k 2,6M 2,6M 52,8M 53,4M

branch-misses 136 145 5,6k 5,6k 6,5k 7k

cache-references 200k 202k 2,3M 2,3M 5,9M 5,6M

cache-misses 26k 25k 360k 371k 1244k 948k

time-elapsed 758µs 507µs 24,8ms 24,4ms 63,5m 63,6ms

2d-blur-filter: effective

gemm, 2mm: same

Never worse when separating

15 / 17

Conclusion

Contributions:

Unified approach for scalarization and data systolization

Parametrized by an affine schedule and an array contraction
mapping

Composable with other polyhedral compilation passes

Perspectives:

Full automation of data systolization

Reduce further the code complexity

Interplay with other polyhedral compilation passes

16 / 17

Questions ?

17 / 17

for (i = 0; i < N - 1; i++) {

systo [2] = A[i+1];

if (i >= 1 && i <= N-2)

B[i] = 0.33333 * (systo [0] + systo [1] +

systo [2]);

for(offset=0; offset<=1; offset++)

systo[offset] = systo[offset+1];

}

for (i = -1; i < N-1; i++) {

for (j = 0; j < N; j++) {

systo [12] = A[i+1][j];

if (i>= 1 && i <= N-1 && j >= 1 && j <=

N-1)

B[i][j] = 0.2 *

(systo [0]+ systo [5]+ systo [6]+ systo [7]

+systo [12]);

for(offset=0; offset<=11; offset++)

systo[offset] = systo[offset+1];

}

}

17 / 17

	Introduction
	Contraction-Driven Scalarisation
	Preprocessing: Data Systolization

