
Towards Optimising Programs with Sketch-Guided
Polyhedral Compilation

Valeran Maytié Reuben Carolan Christophe Alias Thomas Kœhler Cedric Bastoul

28 January 2026 IMPACT

Objective: Semi-automatic optimisation

Naive Fast
How ?

1

Manual Optimization

Manual Automatic

Examples :
- BLAS
- CuDNN (Nvidia)
- KleidiAI (ARM)
- RocBlas (AMD)
- OneDNN (Intel)
- MPS (Apple)

+ Highly effective code
+ Human expertise

- Closed ecosystem
- Very expensive

1

Automatic Optimisation

Manual Automatic

Examples :
- GCC/Clang
- Pluto
- TorchInductor

+ Time saving
+ Correct by construction

- Little flexibility
- Performance not guaranteed

2

Semi-automatic optimisation?

Manual Automatic

?

3

Synthesis-based

void main(int x) {
int y = x * ??;
assert y == x + x;

}

void swap (ref bit[W] x, ref bit[W] y) {
minrepeat

{| x | y |} = x ^ y;
}

4

Synthesis-based

generator bit[W] gen(bit[W] x, int bnd) {
assert bnd >= 0;
if (??) return x;
if (??) return ??;
if (??) return ~gen(x, bnd - 1);
if (??)

return {| gen(x, bnd - 1) (+ | & | ^)
gen (x, bnd - 1)|}

}

Limits:
- SAT solver -> not Scalable
- Search and control mixed
- Lack of construction

on control flow

4

Schedule

Calculation specification

input

SxSy

×××

+++

output

Optimisation script

output.split(y, y, yi, 32)
.parallel(y)
.vectorize(x, vec);

input.store_at(output, y)
.compute_at(output, yi)
.vectorize(x, vec);

Sx.store_at(output, y)
.compute_at(output, yi)
.vectorize(x, vec);

Sy.store_at(output, y)
.compute_at(output, yi)
.vectorize(x, vec);

Sx.compute_with(Sy, x);

5

Schedule

Calculation specification

input

SxSy

×××

+++

output

Optimisation script

output.split(y, y, yi, 32)
.parallel(y)
.vectorize(x, vec);

input.store_at(output, y)
.compute_at(output, yi)
.vectorize(x, vec);

Sx.store_at(output, y)
.compute_at(output, yi)
.vectorize(x, vec);

Sy.store_at(output, y)
.compute_at(output, yi)
.vectorize(x, vec);

Sx.compute_with(Sy, x);

Simplified result

pfor y:
store input, Sx, Sy
for yi:
input
Sx, Sy
for x:

vfor xi:
output

5

Schedule

Calculation specification

input

SxSy

×××

+++

output

Optimisation script

output.split(y, y, yi, 32)
.parallel(y)
.vectorize(x, vec);

input.store_at(output, y)
.compute_at(output, yi)
.vectorize(x, vec);

Sx.store_at(output, y)
.compute_at(output, yi)
.vectorize(x, vec);

Sy.store_at(output, y)
.compute_at(output, yi)
.vectorize(x, vec);

Sx.compute_with(Sy, x);

Simplified result

pfor y:
store input, Sx, Sy
for yi:
input
Sx, Sy
for x:

vfor xi:
output

5

Schedule

Calculation specification

input

SxSy

×××

+++

output

Optimisation script

output.split(y, y, yi, 32)
.parallel(y)
.vectorize(x, vec);

input.store_at(output, y)
.compute_at(output, yi)
.vectorize(x, vec);

Sx.store_at(output, y)
.compute_at(output, yi)
.vectorize(x, vec);

Sy.store_at(output, y)
.compute_at(output, yi)
.vectorize(x, vec);

Sx.compute_with(Sy, x);

Simplified result

pfor y:
store input, Sx, Sy
for yi:
input
Sx, Sy
for x:

vfor xi:
output

5

Schedule

Calculation specification

input

SxSy

×××

+++

output

Optimisation script

output.split(y, y, yi, 32)
.parallel(y)
.vectorize(x, vec);

input.store_at(output, y)
.compute_at(output, yi)
.vectorize(x, vec);

Sx.store_at(output, y)
.compute_at(output, yi)
.vectorize(x, vec);

Sy.store_at(output, y)
.compute_at(output, yi)
.vectorize(x, vec);

Sx.compute_with(Sy, x);

Simplified result

pfor y:
store input, Sx, Sy
for yi:
input
Sx, Sy
for x:

vfor xi:
output

5

Polysketch: dream

Naive

for (int x = 0; x < N; x++)
for (int y = 0; y < x; y++)

B[y][x] = ...;
for (int x = 0; x < N; x++)

for (int y = 0; y < x; y++)
C[y][x] = ...;

+ Sketch

for y:
for x:

C

⇒ Output

for (int y = 0; y < N; y++) {
for (int x = 0; x <= y; x++) {

B[y][x] = ...;
C[y][x] = ...;

}
}

6

Polysketch: This talk

Naive

for (y, x) in PDomain("0≤ x <N∧0≤ x ≤ y"):
B[y, x] = ...;

for (y, x) in PDomain("0≤ x <N∧0≤ x ≤ y"):
C[y, x] = ...;

+ Sketch

for y in Par():
for x in Par():

B[y, x];
C[y, x];

⇒ Output

for (int y = 0; y < N; y++) {
for (int x = 0; x <= y; x++) {

B[y][x] = ...;
C[y][x] = ...;

}
}

SARE
python DSL

Sketch
python DSL Executable C code

7

Input languages

Sketch Spec

Id ::= String
Sketch ::= Arr(Id, List(Index))

| Sketch; Sketch
| Pfor v { Sketch }

Index ::= ~Linear_function | Linear_function

Id ::= String
Spec ::= { equation: Id -> Array,

in: List(Id, PDomain),
out: List(Id) }

Array ::= { vars: List(Id); dom: PDomain; expr: Expr }
Expr ::= v | n | Expr ◦ Expr

| Read(Id, List(Linear_function))
| If PDomain Expr Expr

8

Example Blur 1d

Sketch

for i in Par():
for j in Par():

B[~(i + j)]
C[~i]

Specification

In : A[k] : {0≤ k <N}

Out : C

B[k] : {0≤ k <N−2} := A[k]+A[k+1]+A[k+2]
3

C[k] : {0≤ k <N−4} := B[k]+B[k+1]+B[k+2]
3

9

Blur 1d: Completion

⊢C[k] :0≤ k <N−4
for i in Par():

for j in Par():

B[~(i + j)]

C[~i]

10

Blur 1d: Completion

for i in Par():
i ∈ {} ⊢C[k] :0≤ k <N−4

for j in Par():

B[~(i + j)]

C[~i]

10

Blur 1d: Completion

for i in Par():

for j in Par():

B[~(i + j)]

i ∈ {} ⊢C[k] :0≤ k <N−4
C[~i]

C iteration Domain

(i),()→ {0≤ i<N−4}

(i),(k)→ {0≤ k <N−4}

f(i)= (i, i)

10

Blur 1d: Completion

for i in Par():

for j in Par():

B[~(i + j)]

(i),()→ {0≤ i<N−4}

C[i] = (B[i] + ...) / 3
i ∈ {0≤ i<N−4} ⊢B[k] : i≤ k ≤ i+2

10

Blur 1d: Completion

for i in Par():

i ∈ {0≤ i<N−4} ⊢B[k] :0≤ k ≤ i+2
for j in Par():

B[~(i + j)]

(i),()→ {0≤ i<N−4}

C[i] = (B[i] + ...) / 3

10

Blur 1d: Completion

for i in Par():

for j in Par():
i, j ∈ {0≤ i<N−4} ⊢B[k] : i≤ k ≤ i+2
B[~(i + j)]

(i),()→ {0≤ i<N−4}

C[i] = (B[i] + ...) / 3

B iteration Domain

(i, j),()→ {0≤ i<N−4∧0≤ j ≤2}

(i, j),(k)→ {0≤ i<N−4∧ i≤ k ≤ i+2}

f(i, j)= (i, j, i+ j)

10

Blur 1d: Completion

for i in Par():

for j in Par():
(i, j),()→ {0≤ i<N−4∧0≤ j ≤2}

B[i + j] = (A[i + j] + ...) / 3
⊢

(i),()→ {0≤ i<N−4}

C[i] = (B[i] + ...) / 3

10

Blur 1d: Completion

for i in Par():

(i),()→ {0≤ i<N−4}

for j ∈ {0≤ j ≤2}:

B[i + j] = (A[i + j] + ...) / 3
⊢
(i),()→ {0≤ i<N−4}

C[i] = (B[i] + ...) / 3

10

Blur 1d: Completion

for i in Par():
(i),()→ {0≤ i<N−4}

for j ∈ {0≤ j ≤2}:

B[i + j] = (A[i + j] + ...) / 3

C[i] = (B[i] + ...) / 3
⊢

10

Blur 1d: Completion

(),()→ {}

for i ∈ {0≤ i<N−4}:

for j ∈ {0≤ j ≤2}:

B[i + j] = (A[i + j] + ...) / 3

C[i] = (B[i] + ...) / 3
⊢

10

Example: Shift

Sketch

for i in Par():
B[i]
C[i]

Specification

In : A[k] : {0≤ k <N}

Out : C

B[k] : {1≤ k <N+1} :=A[k−1]
C[k] : {2≤ k <N+2} :=B[k−1]

11

Shift: Completion

(),()→ {} ⊢C[k] :2≤ k <N+2
for i in Par():

B[i]

C[i]

12

Shift: Completion

for i in Par():
(i),()→ {} i ∈ {} ⊢C[k] :2≤ k <N+2

B[i]

C[i]

12

Shift: Completion

for i in Par():

B[i]

(i),()→ {} i ∈ {} ⊢C[k] :2≤ k <N+2
C[i]

C iteration domain

(i,ec),()→ {2≤ i+ec <N+2}

(i),(k)→ {2≤ k <N+2}

f(i,ec)= (i, i+ec)

12

Shift: Completion

for i in Par():

B[i]

(i,ec),()→ {2≤ i+ec <N+2}

C[i + e_c] = B[i + e_c - 1];
(i,ec),()→ {}

i,ec ∈ {2≤ i+ec <N+2} ⊢B[k] : k = i+ec−1 12

Shift: Completion

for i in Par():
(i,ec),()→ {}

i,ec ∈ {2≤ i+ec <N+2} ⊢B[k] : k = i+ec−1
B[i]

(i,ec),()→ {2≤ i+ec <N+2}

C[i + e_c] = B[i + e_c - 1];

B iteration domain

(i,ec,eb),()→ {1≤ i+eb <N+1}

(i,ec),(k)→ {2≤ i+ec <N+2∧k = i+ec −1}

f(i,ec,eb)= (i,ec, i+eb)

12

Shift: Completion

for i in Par():

(i,ec,eb),()→ {1≤ i+eb <N+1}

B[i + e_b] = A[i + e_b - 1];
(i,ec,eb),()→ {eb = ec −1} ⊢

(i,ec),()→ {2≤ i+ec <N+2}

C[i + e_c] = B[i + e_c - 1];

12

Shift: Completion

for i in Par():
(i,ec,eb),()→ {1≤ i+eb <N+1}

B[i + e_b] = A[i + e_b - 1];

C[i + e_c] = B[i + e_c - 1];
(i,ec,eb),()→ {eb = ec −1} ⊢

12

Shift: Completion

(ec,eb),()→ {}

for i ∈ {1≤ i<N+1}:

B[i + e_b] = A[i + e_b - 1];

C[i + e_c] = B[i + e_c - 1];
(ec,eb),()→ {eb = ec −1} ⊢

12

Shift: Completion

(),()→ {}

evar([ec,eb], {eb = ec −1});
for i ∈ {1≤ i<N+1}:

B[i + e_b] = A[i + e_b - 1];

C[i + e_c] = B[i + e_c - 1];
(),()→ {} ⊢

12

Conclusion

Future works:

- Benchmark
- Sketch → Dream

+ Sequential loop
+ Tiling

13

