Towards Optimising Programs with Sketch-Guided
Polyhedral Compilation

Valeran Maytié ~ Reuben Carolan Christophe Alias ~ Thomas Koehler Cedric Bastoul

28 January 2026 IMPACT

Objective: Semi-automatic optimisation

Naive How ? Fast

void multiplyMatrix(int m1[][C1], int m2[][C2])

int result[R1][C2];

printf("Resultant Matrix is:\n");

for (int i =0; i < R1; i++) {

for (int j = 0; j < C2; j++) {
result[i][j] = ©;
for (int k = 0; k < R2; kt+) {
Tesult[i][j] += m1[i][k] * m2[k][j];

¥

printf("%d\t", result[il[j]);
i

printf("\n");
}

Manual Optimization

Manual Automatic
Examples : + Hishly effecti d
© BLAS ' H|g y effec |\:aco e
- CuDNN (Nvidia) uman expertise
- KleidiAI (ARM) - Closed ecosystem
- RocBlas (AMD) - Very expensive
- OneDNN (Intel)
- MPS (Apple)

Automatic Optimisation

Manual Automatic
Examples : . T .
- GCC/Clang ime saving .
+ Correct by construction
- Pluto
- TorchInductor

Little flexibility
- Performance not guaranteed

Semi-automatic optimisation?

Manual Automatic

Synthesis-based

Program sketching void main(int x) {
i = 29
Armando Solar-Lezama inty = x x ??;
assert y == x + x;
Published online: 2 August 2012
© Springer-Verlug 2012 : : .
© SpringerVerlag void swap (ref bit[W] x, ref bit[w] y) {
Abstract Sketching is a synthesis methodology that aims code. This has important implications for usability, because minrepeat
10 bridge the gap between a programmer’s it means that programmers do not need (o master additional Sl x|y lt=
about a problem and the computer’s ability to mana formalisms in order to use the synthesizer, giving it the feel
low-level details. Tn sketching, the programmer uscs a par- of a programming assistant as opposcd to that of a formal I3
tial askeich, i verification tool.

Synthesis-based

generator bit[W] gen(bit[W] x, int bnd) { Limits:
assert bnd >= 0;
if (??) return x;
if (??) return ?7?;

- SAT solver -> not Scalable

if (2?) return ~gen(x, bnd - 1); - Search and control mixed
if (??)
return {| gen(x, bnd - 1) (+ | & | ~) - Lack of construction
gen (x, bnd - 1)}
? on control flow

Calculation specification Optimisation script

@ output.split(y, y, yi, 32)
.parallel(y)
.vectorize(x, vec);

' input.store_at(output, y)
@
)

© ©) .compute_at (output, yi)
.vectorize(x, vec);
a e Sx.store_at(output, y)

.compute_at(output, yi)
@ .vectorize(x, vec);
Sy.store_at(output, y)
.compute_at(output, yi)
.vectorize(x, vec);
Sx.compute_with(Sy, x);

Calculation specification Optimisation script Simplified result

@ output.split(y, y, yi, 32) pfor y:

.parallel(y) store input, Sx, Sy

e e .vectorize(x, vec); for yi:

’ ' input.store_at(output, y) input

©) ©) ©) .compute_at(output, yi) Sx, Sy
.vectorize(x, vec); for x:

e e G Sx.store_at(output, y) vior xi:
.compute_at(output, yi) output

@ .vectorize(x, vec);

Sy.store_at(output, y)
.compute_at(output, yi)
.vectorize(x, vec);

Sx.compute_with(Sy, x);

Calculation specification Optimisation script Simplified result

@ output.split(y, y, yi, 32) i})pfor y:

.parallel(y) store input, Sx, Sy

e e .vectorize(x, vec); for yi:

’ ' input.store_at(output, y) input

©) ©) ©) .compute_at(output, yi) Sx, Sy
.vectorize(x, vec); for x:

e e G Sx.store_at(output, y) vior xi:
.compute_at(output, yi) output

@ .vectorize(x, vec);

Sy.store_at(output, y)
.compute_at(output, yi)
.vectorize(x, vec);

Sx.compute_with(Sy, x);

Calculation specification Optimisation script Simplified result

@ output.split(y, y, yi, 32) pfor y:

.parallel(y) store input, Sx, Sy

e e .vectorize(x, vec); for yi:

’ ' input.store_at(output, y) input

©) ©) ©) .compute_at(output, yi) Sx, Sy
.vectorize(x, vec); for x:

e e G Sx.store_at(output, y) vior xi:
.compute_at(output, yi) output

@ .vectorize(x, vec);

Sy.store_at(output, y)
.compute_at(output, yi)
.vectorize(x, vec);

Sx.compute_with(Sy, x);

Calculation specification Optimisation script Simplified result

@ output.split(y, y, yi, 32) pfor y:
.parallel(y) store input, Sx, Sy
e e .vectorize(x, vec); for yi:
’ ' input.store_at(output, y) %) input
° ° .compute_at(output, yi) Sx, Sy
.vectorize(x, vec); for x:
G Sx.store_at(output, y) vior xi:
.compute_at(output, yi) output
@ .vectorize(x, vec);
Sy.store_at(output, y)
.compute_at(output, yi)
.vectorize(x, vec);
Sx.compute_with(Sy, x);

Polysketch: dream

Naive

for (int x = 0; x < N; x++)
for (int y = 0; y < X; y++)
B[y][XJ
for (int x = 0; x < N X++)
for (int y = 0; y < X;oy++)
Clyl[x] =

+

Sketch

for y:
for x:
©

Output

for (inty = 0; y < N; y++) {
for (int x = 0; x <= vy; x++) {
BLyl[x]
Clyllx]1

Polysketch: This talk

Naive +

for (y, x) in PDomain("0=sx<NAO=x=<y"):

By, xI = ...;
for (y, x) in PDomain("0=x<NAO=x=<y"):
Cly, x1 = ...;
SARE
python DSL

Sketch

for y in Par():
for x in Par():
Bly, x];
Cly, x1;

Sketch
python DSL

=

Output

for (int y = 0; y < N; y++)
for (int x = 0; x <=vy; x++) {
BLyl[x]
Clyllx] = ...;

cog

Executable C code

Input languages

Sketch
1d = String
Sketch ::= Arr(Id, List(Index))
| Sketch; Sketch
| Pfor v { Sketch }
Index = ~Linear_function | Linear_function

Id
Spec

Array
Expr

Spec

String

::= { equation: Id -> Array,

in: List(Id, PDomain),

out: List(Id) }
§ vars: List(Id); dom: PDomain; expr: Expr }
v | n | Expr o Expr

| Read(Id, List(Linear_function))

| If PDomain Expr Expr

Example Blur 1d

Sketch Specification

for i in Par():
for j in Par(): In: A[K:{0=sk<N}
Bl~(1i + J)] Out: C
C[~1i]
Alk] +Alk+1] +Alk + 2]
MH+BM;E+BM+Q
3

Blk]:{0<k<N-2}:=

C[k]Z{OSk<N—4}::

Blur 1d: Completion

FClk]:0<sk<N-4
for i in Par():

for § in Par():

Bl~(1 + j)]

C[~1]

10

Blur 1d: Completion

for i in Par():
[e}FClk]:0<k<N-4

for § in Par():

Bl~(1 + j)]

C[~1]

10

Blur 1d: Completion

C iteration Domain

for i in Par(): (i),()—{0<i<N-4}
for j in Par(): (D) =(00)
B[~(i + J)]

(i), (k) — 10 < k<N-4}

iefi-Clk]:0<k<N-4
C[~i]

10

Blur 1d: Completion

for i in Par():

for § in Par():
B[~(1 +)]

(i),)—{0<i<N-4
C[i] = (B[il + ...) / 3
[e{f0<i<N-4}+-Blk]:isk<i+2
10

Blur 1d: Completion

for i in Par():

[e{f0<i<N-4}+-BJk]:0<k<i+2
for § in Par():

Bl~(1 + j)]

(i),()—~ 0<i<N-4)
C[i] = (B[i] + ...) / 3

10

Blur 1d: Completion

B iteration Domain

for i in Par(): (i,j),)—{0<i<N-4A0<j<2}
for j in Pazx(): F(6.)=(04,0+))
[jefO<i<N-4}+-B[k]:isk<i+2
B{~(1 +)]

(if),(k) = {0<i<N-4ni<sk<i+2}

(i),()—~ 0<i<N-4)
C[i] = (B[i] + ...) / 3

10

Blur 1d: Completion

for i in Par():

for § in Par():
(L),) —{0<i<N-4A0<j<2]
B[i + j] = (A[i + 3] + ...) / 3
l_

(i),() = {0<i<N-4}

Cri] = (B[i]l + ...) / 3

10

Blur 1d: Completion

for i in Par():

(i),()—{0<i<N-4
for je{0<j<2}:

B[i + j] = (A[i + 3] + ...) / 3
l_
(i),()—(0<i<N-4
C[i] = (B[i] + ...) / 3

10

Blur 1d: Completion

for i in Par():
(i),()—>{0<i<N-4

for je{0<j<2}:
B[i + j] = (A[i + 3] + ...) / 3
C[i] = (B[i] + ...) / 3

=
10

Blur 1d: Completion

0.0—4
for ie{0O=si<N-4}:
for je{0<j<2}:
B[i + j] = (A[i + 3] + ...) / 3
C[i] = (B[i]l + ...) / 3

-
10

Example: Shift

Sketch Specification

for i in Par():
B[i]
Cli]

In: Alk]:{0<sk<N}
Out: C

Blk]: {1 <k<N+1}:=A[k-1]
Clk]: {2 <k <N+2}:=Blk-1]

11

Shift: Completion

0, 0= +FCK:2<k<N+2
for i in Par():

B[i]

C[i]

12

Shift: Completion

for i in Par():
(D),)—8 iefrClkl:2<k<N+2

B[i]

C[1i]

12

Shift: Completion

C iteration domain

(hbee),()—{2<i+ec<N+2}
for i in Par():

fliec)=(i,i+ec)
B[i]
(i), (k)= {2<k<N+2}
(0),()— 1 ief}+-Clk]:2<k<N+2

12

Shift: Completion

for i in Par():
B[i]

(hec),()—{2<i+ec<N+2]
Cli + e_c] =B[i+e.c - 1];

(bec), () =8

Lece{2<i+ec<N+2}-B[k]:k=i+e;-1 12

Shift: Completion

B iteration domain

(iec,ep),()—{l<i+ep<N+1}
for i in Par():

(bec),()— 8
ece2<i+ec<N+2}+-Blk]:k=i+e.-1 f(i,ec,ep) = (i,ec,i+ep)
B[i]

(Lec), (k)= {2<i+ec<N+2nk=i+e.—1}
(hec),()—{2<i+ec<N+2]

Cli + e_c] =B[i+e.c - 1];

12

Shift: Completion

for i in Par():

(i,ec,ep),()—{l<i+e,<N+1}
B[i + e_b] = A[i + e_b - 17;
([)eC7eb))(_){eb:ec_:l-} }_

(hec),()—{2<i+ec<N+2]
Cli + e_c] =B[i+e.c - 1];

12

Shift: Completion

for i in Par():
(ec,ep), () —{l<i+e,<N+1}

B[i + e_b]

Al[i + e b - 1];

C[i + e_c] B[i + e_c - 1];
(i,ec,ep),()—{ep=€ec-1} F
12

Shift: Completion

(ec.ep), () —
for ie{l<i<N+1}:

B[i + e_b]

Al[i + e b - 1];

C[i + e_c] B[i + e_c - 1];
(ec.ep),()—{ep=e-1} F
12

Shift: Completion

0,0)— 8
evar([ec,eb] r {eb :ec_l}) r
for ie{l<i<N+1}:

B[i + e_b] Al[i + e b - 1];

o
[|
'_I

o+
o
(@]
—_
[

B[i + e_c - 1];

12

Conclusion

Future works:

- Benchmark

- Sketch — Dream
+ Sequential loop
+ Tiling

13

