
Wild idea - Polyhedral model and linear algebra
(LAPACK)

Guillaume Iooss

January 28th, 2026



Let’s start with a wild opinion . . .

Polyhedral programs are too general.

(... No tomato/torch/pitchfork (yet) ? Great !)

Class of polyhedral programs is too general to reach best perf :
Focus on applicability of mathematical framework

How far can a polyhedral analysis/transformation be applied ?

But, covers multiple application domains (cf Polybench)
Different properties / bottlenecks / difficulties
They are not optimized the same way.
Ex : Stencils (jacobi2d) VS gemm



Let’s start with a wild opinion . . .

Polyhedral programs are too general.

(... No tomato/torch/pitchfork (yet) ? Great !)

Class of polyhedral programs is too general to reach best perf :
Focus on applicability of mathematical framework

How far can a polyhedral analysis/transformation be applied ?

But, covers multiple application domains (cf Polybench)
Different properties / bottlenecks / difficulties
They are not optimized the same way.
Ex : Stencils (jacobi2d) VS gemm



Let’s start with a wild opinion . . .

Polyhedral programs are too general.

(... No tomato/torch/pitchfork (yet) ? Great !)

Class of polyhedral programs is too general to reach best perf :
Focus on applicability of mathematical framework

How far can a polyhedral analysis/transformation be applied ?

But, covers multiple application domains (cf Polybench)
Different properties / bottlenecks / difficulties
They are not optimized the same way.
Ex : Stencils (jacobi2d) VS gemm



Let’s start with a wild opinion . . .

Polyhedral programs are too general.

(... No tomato/torch/pitchfork (yet) ? Great !)

Class of polyhedral programs is too general to reach best perf :
Focus on applicability of mathematical framework

How far can a polyhedral analysis/transformation be applied ?

But, covers multiple application domains (cf Polybench)
Different properties / bottlenecks / difficulties
They are not optimized the same way.
Ex : Stencils (jacobi2d) VS gemm



Polyhedral application subdomains
More info on a prog = better optimization work

Specialization is advantageous
Constraining the input program (ex : DSL)
Detecting patterns/raising abstraction

⇒ Deploy a more pertinent compilation pipeline
(more general view : how to estimate the most important bottleneck in a
program, and adapt the compilation pipeline to it ?)

Some concrete examples :
Matrix multiplication (abstraction rising in MLIR)
Tensor operators (“the rectangular model”)
Stencils (DSL)
Image processing / network of convolutions (Polymage)
. . .

What about linear algebra ?
(as in LAPACK, not mlir.linalg)



Polyhedral application subdomains
More info on a prog = better optimization work

Specialization is advantageous
Constraining the input program (ex : DSL)
Detecting patterns/raising abstraction

⇒ Deploy a more pertinent compilation pipeline
(more general view : how to estimate the most important bottleneck in a
program, and adapt the compilation pipeline to it ?)

Some concrete examples :
Matrix multiplication (abstraction rising in MLIR)
Tensor operators (“the rectangular model”)
Stencils (DSL)
Image processing / network of convolutions (Polymage)
. . .

What about linear algebra ?
(as in LAPACK, not mlir.linalg)



Polyhedral application subdomains
More info on a prog = better optimization work

Specialization is advantageous
Constraining the input program (ex : DSL)
Detecting patterns/raising abstraction

⇒ Deploy a more pertinent compilation pipeline
(more general view : how to estimate the most important bottleneck in a
program, and adapt the compilation pipeline to it ?)

Some concrete examples :
Matrix multiplication (abstraction rising in MLIR)
Tensor operators (“the rectangular model”)
Stencils (DSL)
Image processing / network of convolutions (Polymage)
. . .

What about linear algebra ?
(as in LAPACK, not mlir.linalg)



Polyhedral application subdomains
More info on a prog = better optimization work

Specialization is advantageous
Constraining the input program (ex : DSL)
Detecting patterns/raising abstraction

⇒ Deploy a more pertinent compilation pipeline
(more general view : how to estimate the most important bottleneck in a
program, and adapt the compilation pipeline to it ?)

Some concrete examples :
Matrix multiplication (abstraction rising in MLIR)
Tensor operators (“the rectangular model”)
Stencils (DSL)
Image processing / network of convolutions (Polymage)
. . .

What about linear algebra ?

(as in LAPACK, not mlir.linalg)



Polyhedral application subdomains
More info on a prog = better optimization work

Specialization is advantageous
Constraining the input program (ex : DSL)
Detecting patterns/raising abstraction

⇒ Deploy a more pertinent compilation pipeline
(more general view : how to estimate the most important bottleneck in a
program, and adapt the compilation pipeline to it ?)

Some concrete examples :
Matrix multiplication (abstraction rising in MLIR)
Tensor operators (“the rectangular model”)
Stencils (DSL)
Image processing / network of convolutions (Polymage)
. . .

What about linear algebra ?
(as in LAPACK, not mlir.linalg)



What is a linear algebra program ?

What properties could be useful for compilation ?

(Unchecked wild) intuition on Cholesky (≈ Polybench version) :

for (i = 0 ; i < N ; i++) {
for (j = 0 ; j < i ; j++) {

for (k = 0 ; k < j ; k++) {
A[i][j] -= A[i][k] * A[j][k] ;

}
}
for (j = 0 ; j < i ; j++) {

A[i][j] /= A[j][j] ;
}
for (k = 0 ; k < i ; k++) {

A[i][i] -= A[i][k] * A[i][k] ;
}
A[i][i] = sqrt(A[i][i]) ;

}

Structure of loops : temporal dimensions surrounding
operations with reduction/parallel dimensions.

Work progression over matrix : row-by-row/column-by-column



What is a linear algebra program ?

What properties could be useful for compilation ?
(Unchecked wild) intuition on Cholesky (≈ Polybench version) :

for (i = 0 ; i < N ; i++) {
for (j = 0 ; j < i ; j++) {

for (k = 0 ; k < j ; k++) {
A[i][j] -= A[i][k] * A[j][k] ;

}
}
for (j = 0 ; j < i ; j++) {

A[i][j] /= A[j][j] ;
}
for (k = 0 ; k < i ; k++) {

A[i][i] -= A[i][k] * A[i][k] ;
}
A[i][i] = sqrt(A[i][i]) ;

}

Structure of loops : temporal dimensions surrounding
operations with reduction/parallel dimensions.

Work progression over matrix : row-by-row/column-by-column



Further example - blocked Cholesky

Blocked version : spotrf.f from LAPACK (excuse my Fren- Fortran)

3 BLAS operators (+ a recursion) / same structure of loops



Conclusion

Wild intuition (no systematic study yet) :
Linear algebra programs have properties on its structure
Other constraints (shape of access function, iteration
domains, . . .)

Properties probably exploitable for performance :
Similarities with network of tensor operations ?
Intuitively, register tiling is a good strategy for both

Of course, major differences : triangular domains, . . .
Gap between the two domains might not be “that far” ?
(expertise transferable ?)

Thanks for listening !



Conclusion

Wild intuition (no systematic study yet) :
Linear algebra programs have properties on its structure
Other constraints (shape of access function, iteration
domains, . . .)

Properties probably exploitable for performance :
Similarities with network of tensor operations ?
Intuitively, register tiling is a good strategy for both

Of course, major differences : triangular domains, . . .
Gap between the two domains might not be “that far” ?
(expertise transferable ?)

Thanks for listening !



Conclusion

Wild intuition (no systematic study yet) :
Linear algebra programs have properties on its structure
Other constraints (shape of access function, iteration
domains, . . .)

Properties probably exploitable for performance :
Similarities with network of tensor operations ?
Intuitively, register tiling is a good strategy for both

Of course, major differences : triangular domains, . . .
Gap between the two domains might not be “that far” ?
(expertise transferable ?)

Thanks for listening !


