Wild idea - Polyhedral model and linear algebra
(LAPACK)

Guillaume looss

January 28th, 2026

Let's start with a wild opinion . ..

Let's start with a wild opinion . ..

Polyhedral programs are too general.

(... No tomato/torch/pitchfork (yet) ? Great!)

Let's start with a wild opinion . ..

Polyhedral programs are too general.

(... No tomato/torch/pitchfork (yet) ? Great!)

Class of polyhedral programs is too general to reach best perf :
@ Focus on applicability of mathematical framework
e How far can a polyhedral analysis/transformation be applied ?

Let's start with a wild opinion . ..

Polyhedral programs are too general.

(... No tomato/torch/pitchfork (yet) ? Great!)

Class of polyhedral programs is too general to reach best perf :
@ Focus on applicability of mathematical framework
e How far can a polyhedral analysis/transformation be applied ?

e But, covers multiple application domains (cf Polybench)
o Different properties / bottlenecks / difficulties
e They are not optimized the same way.
Ex : Stencils (jacobi2d) VS gemm

Polyhedral application subdomains

More info on a prog = better optimization work
@ Specialization is advantageous
o Constraining the input program (ex : DSL)
o Detecting patterns/raising abstraction

Polyhedral application subdomains

More info on a prog = better optimization work
@ Specialization is advantageous
o Constraining the input program (ex : DSL)
o Detecting patterns/raising abstraction
= Deploy a more pertinent compilation pipeline
(more general view : how to estimate the most important bottleneck in a

program, and adapt the compilation pipeline to it ?)

Polyhedral application subdomains

More info on a prog = better optimization work
@ Specialization is advantageous
o Constraining the input program (ex : DSL)
o Detecting patterns/raising abstraction
= Deploy a more pertinent compilation pipeline
(more general view : how to estimate the most important bottleneck in a

program, and adapt the compilation pipeline to it ?)

Some concrete examples :

Matrix multiplication (abstraction rising in MLIR)
Tensor operators (“the rectangular model”)

Stencils (DSL)

Image processing / network of convolutions (Polymage)

Polyhedral application subdomains

More info on a prog = better optimization work
@ Specialization is advantageous
o Constraining the input program (ex : DSL)
o Detecting patterns/raising abstraction
= Deploy a more pertinent compilation pipeline
(more general view : how to estimate the most important bottleneck in a

program, and adapt the compilation pipeline to it ?)

Some concrete examples :

Matrix multiplication (abstraction rising in MLIR)
Tensor operators (“the rectangular model”)

Stencils (DSL)

Image processing / network of convolutions (Polymage)

What about linear algebra?

Polyhedral application subdomains

More info on a prog = better optimization work
@ Specialization is advantageous
o Constraining the input program (ex : DSL)
o Detecting patterns/raising abstraction
= Deploy a more pertinent compilation pipeline
(more general view : how to estimate the most important bottleneck in a

program, and adapt the compilation pipeline to it ?)

Some concrete examples :

Matrix multiplication (abstraction rising in MLIR)
Tensor operators (“the rectangular model”)

Stencils (DSL)

Image processing / network of convolutions (Polymage)

What about linear algebra?
(as in LAPACK, not mlir.linalg)

What is a linear algebra program ?

@ What properties could be useful for compilation ?

What is a linear algebra program ?

@ What properties could be useful for compilation ?
(Unchecked wild) intuition on Cholesky (/ Polybench version) :
for (i=0;i<N;i++){
for (j=0:j <i;j++) {
for (k=0; k <j; k++) {
, Al -= A[i](k] * ALi][K] ;

for j=0;]j<i;j++){
, Afilli] /= AL

for (k =0; k <i; k++) {
Al -= ALK * ALT(K]

}
A[i][i] = sart(A[i[i]);

}

@ Structure of loops : temporal dimensions surrounding
operations with reduction/parallel dimensions.
o Work progression over matrix : row-by-row/column-by-column

Further example - blocked Cholesky

Blocked version : spotrf.f from LAPACK (excuse my Fren- Fortran)

Compute the Cholesky factorization A = L*L**T.
DO 20 J =1, N, NB

Update and factorize the current diagonal block and test
for non-positive-definiteness.

JB = MIN(NB, N-J+1)
CALL SSYRK(‘'Lower', 'No transpose', JB, J-1, -ONE,
A(J, 1), LDA, ONE, A(J, J), LDA)
CALL SPOTRF2(‘'Lower', JB, A(J, J), LDA, INFO)
IF(INFO.NE.O®)
GO TO 30
IF(J+JB.LE.N) THEN

Compute the current block column.

CALL SGEMM('No transpose', 'Transpose', N-J-JB+1,]B,
J-1, -ONE, A(J+JB, 1), LDA, A(J, 1),
LDA, ONE, A(J+JB, J), LDA)
CALL STRSM('Right', 'Lower', 'Transpose', 'Non-unit',
N-J-JB+1, JB, ONE, A(J, J), LDA,
A(J+JB, J), LDA)
END IF
CONTINUE

@ 3 BLAS operators (+ a recursion) / same structure of loops

Conclusion

Wild intuition (no systematic study yet) :
@ Linear algebra programs have properties on its structure

@ Other constraints (shape of access function, iteration
domains, ...)

Conclusion

Wild intuition (no systematic study yet) :
@ Linear algebra programs have properties on its structure

@ Other constraints (shape of access function, iteration
domains, ...)

Properties probably exploitable for performance :
@ Similarities with network of tensor operations ?

o Intuitively, register tiling is a good strategy for both

o Of course, major differences : triangular domains, ...
o Gap between the two domains might not be “that far"?
(expertise transferable ?)

Conclusion

Wild intuition (no systematic study yet) :
@ Linear algebra programs have properties on its structure

@ Other constraints (shape of access function, iteration
domains, ...)

Properties probably exploitable for performance :
@ Similarities with network of tensor operations ?

o Intuitively, register tiling is a good strategy for both

o Of course, major differences : triangular domains, ...
o Gap between the two domains might not be “that far"?
(expertise transferable ?)

Thanks for listening !

